Andrews, Nicholas
Ensemble Distillation for Structured Prediction: Calibrated, Accurate, Fast---Choose Three
Reich, Steven, Mueller, David, Andrews, Nicholas
Modern neural networks do not always produce well-calibrated predictions, even when trained with a proper scoring function such as cross-entropy. In classification settings, simple methods such as isotonic regression or temperature scaling may be used in conjunction with a held-out dataset to calibrate model outputs. However, extending these methods to structured prediction is not always straightforward or effective; furthermore, a held-out calibration set may not always be available. In this paper, we study ensemble distillation as a general framework for producing well-calibrated structured prediction models while avoiding the prohibitive inference-time cost of ensembles. We validate this framework on two tasks: named-entity recognition and machine translation. We find that, across both tasks, ensemble distillation produces models which retain much of, and occasionally improve upon, the performance and calibration benefits of ensembles, while only requiring a single model during test-time.
Learning Invariant Representations of Social Media Users
Andrews, Nicholas, Bishop, Marcus
The evolution of social media users' behavior over time complicates user-level comparison tasks such as verification, classification, clustering, and ranking. As a result, na ıve approaches may fail to generalize to new users or even to future observations of previously known users. In this paper, we propose a novel procedure to learn a mapping from short episodes of user activity on social media to a vector space in which the distance between points captures the similarity of the corresponding users' invariant features. We fit the model by optimizing a surrogate metric learning objective over a large corpus of unlabeled social media content. Once learned, the mapping may be applied to users not seen at training time and enables efficient comparisons of users in the resulting vector space. We present a comprehensive evaluation to validate the benefits of the proposed approach using data from Reddit, Twitter, and Wikipedia.