Plotting

 Andreou, Andreas G.


Natural Language to Verilog: Design of a Recurrent Spiking Neural Network using Large Language Models and ChatGPT

arXiv.org Artificial Intelligence

This paper investigates the use of Large Language Models (LLMs) for automating the generation of hardware description code, aiming to explore their potential in supporting and enhancing the development of efficient neuromorphic computing architectures. Building on our prior work, we employ OpenAI's ChatGPT4 and natural language prompts to synthesize a RTL Verilog module of a programmable recurrent spiking neural network, while also generating test benches to assess the system's correctness. The resultant design was validated in three case studies, the exclusive OR,the IRIS flower classification and the MNIST hand-written digit classification, achieving accuracies of up to 96.6%. To verify its synthesizability and implementability, the design was prototyped on a field-programmable gate array and implemented on SkyWater 130 nm technology by using an open-source electronic design automation flow. Additionally, we have submitted it to Tiny Tapeout 6 chip fabrication program to further evaluate the system on-chip performance in the future.


NeuroBench: Advancing Neuromorphic Computing through Collaborative, Fair and Representative Benchmarking

arXiv.org Artificial Intelligence

The field of neuromorphic computing holds great promise in terms of advancing computing efficiency and capabilities by following brain-inspired principles. However, the rich diversity of techniques employed in neuromorphic research has resulted in a lack of clear standards for benchmarking, hindering effective evaluation of the advantages and strengths of neuromorphic methods compared to traditional deep-learning-based methods. This paper presents a collaborative effort, bringing together members from academia and the industry, to define benchmarks for neuromorphic computing: NeuroBench. The goals of NeuroBench are to be a collaborative, fair, and representative benchmark suite developed by the community, for the community. In this paper, we discuss the challenges associated with benchmarking neuromorphic solutions, and outline the key features of NeuroBench. We believe that NeuroBench will be a significant step towards defining standards that can unify the goals of neuromorphic computing and drive its technological progress. Please visit neurobench.ai for the latest updates on the benchmark tasks and metrics.


An Analog Neural Network Inspired by Fractal Block Coding

Neural Information Processing Systems

We consider the problem of decoding block coded data, using a physical dynamical system. We sketch out a decompression algorithm for fractal block codes and then show how to implement a recurrent neural network using physically simple but highly-nonlinear, analog circuit models of neurons and synapses. The nonlinear system has many fixed points, but we have at our disposal a procedure to choose the parameters in such a way that only one solution, the desired solution, is stable. As a partial proof of the concept, we present experimental data from a small system a 16-neuron analog CMOS chip fabricated in a 2m analog p-well process. This chip operates in the subthreshold regime and, for each choice of parameters, converges to a unique stable state. Each state exhibits a qualitatively fractal shape.


An Analog Neural Network Inspired by Fractal Block Coding

Neural Information Processing Systems

We consider the problem of decoding block coded data, using a physical dynamical system. We sketch out a decompression algorithm for fractal block codes and then show how to implement a recurrent neural network using physically simple but highly-nonlinear, analog circuit models of neurons and synapses. The nonlinear system has many fixed points, but we have at our disposal a procedure to choose the parameters in such a way that only one solution, the desired solution, is stable. As a partial proof of the concept, we present experimental data from a small system a 16-neuron analog CMOS chip fabricated in a 2m analog p-well process. This chip operates in the subthreshold regime and, for each choice of parameters, converges to a unique stable state. Each state exhibits a qualitatively fractal shape.


VLSI Phase Locking Architectures for Feature Linking in Multiple Target Tracking Systems

Neural Information Processing Systems

Department of Electrical Engineering The University of Maryland College Park, MD 20722 Abstract Recent physiological research has shown that synchronization of oscillatory responses in striate cortex may code for relationships between visual features of objects. A VLSI circuit has been designed toprovide rapid phase-locking synchronization of multiple oscillators to allow for further exploration of this neural mechanism. By exploiting the intrinsic random transistor mismatch of devices operated in subthreshold, large groups of phase-locked oscillators can be readily partitioned into smaller phase-locked groups. A mUltiple target tracker for binary images is described utilizing this phase-locking architecture. A VLSI chip has been fabricated and tested to verify the architecture.


VLSI Phase Locking Architectures for Feature Linking in Multiple Target Tracking Systems

Neural Information Processing Systems

Recent physiological research has shown that synchronization of oscillatory responses in striate cortex may code for relationships between visual features of objects. A VLSI circuit has been designed to provide rapid phase-locking synchronization of multiple oscillators to allow for further exploration of this neural mechanism. By exploiting the intrinsic random transistor mismatch of devices operated in subthreshold, large groups of phase-locked oscillators can be readily partitioned into smaller phase-locked groups. A mUltiple target tracker for binary images is described utilizing this phase-locking architecture. A VLSI chip has been fabricated and tested to verify the architecture.


Analog Cochlear Model for Multiresolution Speech Analysis

Neural Information Processing Systems

The tradeoff between time and frequency resolution is viewed as the fundamental difference between conventional spectrographic analysis and cochlear signal processing for broadband, rapid-changing signals. The model's response exhibits a wavelet-like analysis in the scale domain that preserves good temporal resolution; the frequency of each spectral component in a broadband signal can be accurately determined from the interpeak intervals in the instantaneous firing rates of auditory fibers. Such properties of the cochlear model are demonstrated with natural speech and synthetic complex signals. 1 Introduction As a nonparametric tool, spectrogram, or short-term Fourier transform, is widely used in analyzing non-stationary signals, such speech. Usually a window is applied to the running signal and then the Fourier transform is performed. The specific window applied determines the tradeoff between temporal and spectral resolutions of the analysis, as indicated by the uncertainty principle [1].


Analog Cochlear Model for Multiresolution Speech Analysis

Neural Information Processing Systems

The tradeoff between time and frequency resolution is viewed as the fundamental difference between conventional spectrographic analysis and cochlear signal processing for broadband, rapid-changing signals. The model's response exhibits a wavelet-like analysis in the scale domain that preserves good temporal resolution; the frequency of each spectral component in a broadband signal can be accurately determined from the interpeak intervals in the instantaneous firing rates of auditory fibers. Such properties of the cochlear model are demonstrated with natural speech and synthetic complex signals. 1 Introduction As a nonparametric tool, spectrogram, or short-term Fourier transform, is widely used in analyzing non-stationary signals, such speech. Usually a window is applied to the running signal and then the Fourier transform is performed. The specific window applied determines the tradeoff between temporal and spectral resolutions of the analysis, as indicated by the uncertainty principle [1].