Not enough data to create a plot.
Try a different view from the menu above.
Andreas Krause
No-Regret Learning in Unknown Games with Correlated Payoffs
Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, Andreas Krause
We consider the problem of learning to play a repeated multi-agent game with an unknown reward function. Single player online learning algorithms attain strong regret bounds when provided with full information feedback, which unfortunately is unavailable in many real-world scenarios. Bandit feedback alone, i.e., observing outcomes only for the selected action, yields substantially worse performance. In this paper, we consider a natural model where, besides a noisy measurement of the obtained reward, the player can also observe the opponents' actions. This feedback model, together with a regularity assumption on the reward function, allows us to exploit the correlations among different game outcomes by means of Gaussian processes (GPs). We propose a novel confidence-bound based bandit algorithm GP-MW, which utilizes the GP model for the reward function and runs a multiplicative weight (MW) method. We obtain novel kernel-dependent regret bounds that are comparable to the known bounds in the full information setting, while substantially improving upon the existing bandit results. We experimentally demonstrate the effectiveness of GP-MW in random matrix games, as well as realworld problems of traffic routing and movie recommendation. In our experiments, GP-MW consistently outperforms several baselines, while its performance is often comparable to methods that have access to full information feedback.
Safe Exploration for Interactive Machine Learning
Matteo Turchetta, Felix Berkenkamp, Andreas Krause
In Interactive Machine Learning (IML), we iteratively make decisions and obtain noisy observations of an unknown function. While IML methods, e.g., Bayesian optimization and active learning, have been successful in applications, on realworld systems they must provably avoid unsafe decisions. To this end, safe IML algorithms must carefully learn about a priori unknown constraints without making unsafe decisions. Existing algorithms for this problem learn about the safety of all decisions to ensure convergence. This is sample-inefficient, as it explores decisions that are not relevant for the original IML objective.
Adaptive Sequence Submodularity
Marko Mitrovic, Ehsan Kazemi, Moran Feldman, Andreas Krause, Amin Karbasi
Teaching Multiple Concepts to a Forgetful Learner
Anette Hunziker, Yuxin Chen, Oisin Mac Aodha, Manuel Gomez Rodriguez, Andreas Krause, Pietro Perona, Yisong Yue, Adish Singla
How can we help a forgetful learner learn multiple concepts within a limited time frame? While there have been extensive studies in designing optimal schedules for teaching a single concept given a learner's memory model, existing approaches for teaching multiple concepts are typically based on heuristic scheduling techniques without theoretical guarantees. In this paper, we look at the problem from the perspective of discrete optimization and introduce a novel algorithmic framework for teaching multiple concepts with strong performance guarantees. Our framework is both generic, allowing the design of teaching schedules for different memory models, and also interactive, allowing the teacher to adapt the schedule to the underlying forgetting mechanisms of the learner. Furthermore, for a well-known memory model, we are able to identify a regime of model parameters where our framework is guaranteed to achieve high performance. We perform extensive evaluations using simulations along with real user studies in two concrete applications: (i) an educational app for online vocabulary teaching; and (ii) an app for teaching novices how to recognize animal species from images. Our results demonstrate the effectiveness of our algorithm compared to popular heuristic approaches.
No-Regret Learning in Unknown Games with Correlated Payoffs
Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, Andreas Krause
We consider the problem of learning to play a repeated multi-agent game with an unknown reward function. Single player online learning algorithms attain strong regret bounds when provided with full information feedback, which unfortunately is unavailable in many real-world scenarios. Bandit feedback alone, i.e., observing outcomes only for the selected action, yields substantially worse performance. In this paper, we consider a natural model where, besides a noisy measurement of the obtained reward, the player can also observe the opponents' actions. This feedback model, together with a regularity assumption on the reward function, allows us to exploit the correlations among different game outcomes by means of Gaussian processes (GPs). We propose a novel confidence-bound based bandit algorithm GP-MW, which utilizes the GP model for the reward function and runs a multiplicative weight (MW) method. We obtain novel kernel-dependent regret bounds that are comparable to the known bounds in the full information setting, while substantially improving upon the existing bandit results. We experimentally demonstrate the effectiveness of GP-MW in random matrix games, as well as realworld problems of traffic routing and movie recommendation. In our experiments, GP-MW consistently outperforms several baselines, while its performance is often comparable to methods that have access to full information feedback.
Adaptive Sequence Submodularity
Marko Mitrovic, Ehsan Kazemi, Moran Feldman, Andreas Krause, Amin Karbasi
In many machine learning applications, one needs to interactively select a sequence of items (e.g., recommending movies based on a user's feedback) or make sequential decisions in a certain order (e.g., guiding an agent through a series of states). Not only do sequences already pose a dauntingly large search space, but we must also take into account past observations, as well as the uncertainty of future outcomes. Without further structure, finding an optimal sequence is notoriously challenging, if not completely intractable. In this paper, we view the problem of adaptive and sequential decision making through the lens of submodularity and propose an adaptive greedy policy with strong theoretical guarantees. Additionally, to demonstrate the practical utility of our results, we run experiments on Amazon product recommendation and Wikipedia link prediction tasks.
Teaching Multiple Concepts to a Forgetful Learner
Anette Hunziker, Yuxin Chen, Oisin Mac Aodha, Manuel Gomez Rodriguez, Andreas Krause, Pietro Perona, Yisong Yue, Adish Singla
How can we help a forgetful learner learn multiple concepts within a limited time frame? While there have been extensive studies in designing optimal schedules for teaching a single concept given a learner's memory model, existing approaches for teaching multiple concepts are typically based on heuristic scheduling techniques without theoretical guarantees. In this paper, we look at the problem from the perspective of discrete optimization and introduce a novel algorithmic framework for teaching multiple concepts with strong performance guarantees. Our framework is both generic, allowing the design of teaching schedules for different memory models, and also interactive, allowing the teacher to adapt the schedule to the underlying forgetting mechanisms of the learner. Furthermore, for a well-known memory model, we are able to identify a regime of model parameters where our framework is guaranteed to achieve high performance. We perform extensive evaluations using simulations along with real user studies in two concrete applications: (i) an educational app for online vocabulary teaching; and (ii) an app for teaching novices how to recognize animal species from images. Our results demonstrate the effectiveness of our algorithm compared to popular heuristic approaches.
Fast and Provably Good Seedings for k-Means
Olivier Bachem, Mario Lucic, Hamed Hassani, Andreas Krause
Seeding - the task of finding initial cluster centers - is critical in obtaining highquality clusterings for k-Means. However, k-means++ seeding, the state of the art algorithm, does not scale well to massive datasets as it is inherently sequential and requires k full passes through the data. It was recently shown that Markov chain Monte Carlo sampling can be used to efficiently approximate the seeding step of k-means++. However, this result requires assumptions on the data generating distribution. We propose a simple yet fast seeding algorithm that produces provably good clusterings even without assumptions on the data. Our analysis shows that the algorithm allows for a favourable trade-off between solution quality and computational cost, speeding up k-means++ seeding by up to several orders of magnitude.