Anandkumar, Animashree
Learning Topic Models and Latent Bayesian Networks Under Expansion Constraints
Anandkumar, Animashree, Hsu, Daniel, Javanmard, Adel, Kakade, Sham M.
Unsupervised estimation of latent variable models is a fundamental problem central to numerous applications of machine learning and statistics. This work presents a principled approach for estimating broad classes of such models, including probabilistic topic models and latent linear Bayesian networks, using only second-order observed moments. The sufficient conditions for identifiability of these models are primarily based on weak expansion constraints on the topic-word matrix, for topic models, and on the directed acyclic graph, for Bayesian networks. Because no assumptions are made on the distribution among the latent variables, the approach can handle arbitrary correlations among the topics or latent factors. In addition, a tractable learning method via $\ell_1$ optimization is proposed and studied in numerical experiments.
Learning loopy graphical models with latent variables: Efficient methods and guarantees
Anandkumar, Animashree, Valluvan, Ragupathyraj
The problem of structure estimation in graphical models with latent variables is considered. We characterize conditions for tractable graph estimation and develop efficient methods with provable guarantees. We consider models where the underlying Markov graph is locally tree-like, and the model is in the regime of correlation decay. For the special case of the Ising model, the number of samples $n$ required for structural consistency of our method scales as $n=\Omega(\theta_{\min}^{-\delta\eta(\eta+1)-2}\log p)$, where p is the number of variables, $\theta_{\min}$ is the minimum edge potential, $\delta$ is the depth (i.e., distance from a hidden node to the nearest observed nodes), and $\eta$ is a parameter which depends on the bounds on node and edge potentials in the Ising model. Necessary conditions for structural consistency under any algorithm are derived and our method nearly matches the lower bound on sample requirements. Further, the proposed method is practical to implement and provides flexibility to control the number of latent variables and the cycle lengths in the output graph.
A Spectral Algorithm for Latent Dirichlet Allocation
Anandkumar, Animashree, Foster, Dean P., Hsu, Daniel, Kakade, Sham M., Liu, Yi-Kai
The problem of topic modeling can be seen as a generalization of the clustering problem, in that it posits that observations are generated due to multiple latent factors (e.g., the words in each document are generated as a mixture of several active topics, as opposed to just one). This increased representational power comes at the cost of a more challenging unsupervised learning problem of estimating the topic probability vectors (the distributions over words for each topic), when only the words are observed and the corresponding topics are hidden. We provide a simple and efficient learning procedure that is guaranteed to recover the parameters for a wide class of mixture models, including the popular latent Dirichlet allocation (LDA) model. For LDA, the procedure correctly recovers both the topic probability vectors and the prior over the topics, using only trigram statistics (i.e., third order moments, which may be estimated with documents containing just three words). The method, termed Excess Correlation Analysis (ECA), is based on a spectral decomposition of low order moments (third and fourth order) via two singular value decompositions (SVDs). Moreover, the algorithm is scalable since the SVD operations are carried out on $k\times k$ matrices, where $k$ is the number of latent factors (e.g. the number of topics), rather than in the $d$-dimensional observed space (typically $d \gg k$).
A Method of Moments for Mixture Models and Hidden Markov Models
Anandkumar, Animashree, Hsu, Daniel, Kakade, Sham M.
Mixture models are a fundamental tool in applied statistics and machine learning for treating data taken from multiple subpopulations. The current practice for estimating the parameters of such models relies on local search heuristics (e.g., the EM algorithm) which are prone to failure, and existing consistent methods are unfavorable due to their high computational and sample complexity which typically scale exponentially with the number of mixture components. This work develops an efficient method of moments approach to parameter estimation for a broad class of high-dimensional mixture models with many components, including multi-view mixtures of Gaussians (such as mixtures of axis-aligned Gaussians) and hidden Markov models. The new method leads to rigorous unsupervised learning results for mixture models that were not achieved by previous works; and, because of its simplicity, it offers a viable alternative to EM for practical deployment.
High-Dimensional Covariance Decomposition into Sparse Markov and Independence Domains
Janzamin, Majid, Anandkumar, Animashree
In this paper, we present a novel framework incorporating a combination of sparse models in different domains. We posit the observed data as generated from a linear combination of a sparse Gaussian Markov model (with a sparse precision matrix) and a sparse Gaussian independence model (with a sparse covariance matrix). We provide efficient methods for decomposition of the data into two domains, \viz Markov and independence domains. We characterize a set of sufficient conditions for identifiability and model consistency. Our decomposition method is based on a simple modification of the popular $\ell_1$-penalized maximum-likelihood estimator ($\ell_1$-MLE). We establish that our estimator is consistent in both the domains, i.e., it successfully recovers the supports of both Markov and independence models, when the number of samples $n$ scales as $n = \Omega(d^2 \log p)$, where $p$ is the number of variables and $d$ is the maximum node degree in the Markov model. Our conditions for recovery are comparable to those of $\ell_1$-MLE for consistent estimation of a sparse Markov model, and thus, we guarantee successful high-dimensional estimation of a richer class of models under comparable conditions. Our experiments validate these results and also demonstrate that our models have better inference accuracy under simple algorithms such as loopy belief propagation.
High-Dimensional Graphical Model Selection: Tractable Graph Families and Necessary Conditions
Anandkumar, Animashree, Tan, Vincent, Willsky, Alan S.
We consider the problem of Ising and Gaussian graphical model selection given n i.i.d. samples from the model. We propose an efficient threshold-based algorithm for structure estimation based known as conditional mutual information test. This simple local algorithm requires only low-order statistics of the data and decides whether two nodes are neighbors in the unknown graph. Under some transparent assumptions, we establish that the proposed algorithm is structurally consistent (or sparsistent) when the number of samples scales as n= Omega(J_{min}^{-4} log p), where p is the number of nodes and J_{min} is the minimum edge potential. We also prove novel non-asymptotic necessary conditions for graphical model selection.
Spectral Methods for Learning Multivariate Latent Tree Structure
Anandkumar, Animashree, Chaudhuri, Kamalika, Hsu, Daniel J., Kakade, Sham M., Song, Le, Zhang, Tong
This work considers the problem of learning the structure of multivariate linear tree models, which include a variety of directed tree graphical models with continuous, discrete, and mixed latent variables such as linear-Gaussian models, hidden Markov models, Gaussian mixture models, and Markov evolutionary trees. The setting is one where we only have samples from certain observed variables in the tree, and our goal is to estimate the tree structure (i.e., the graph of how the underlying hidden variables are connected to each other and to the observed variables). We propose the Spectral Recursive Grouping algorithm, an efficient and simple bottom-up procedure for recovering the tree structure from independent samples of the observed variables. Our finite sample size bounds for exact recovery of the tree structure reveal certain natural dependencies on underlying statistical and structural properties of the underlying joint distribution. Furthermore, our sample complexity guarantees have no explicit dependence on the dimensionality of the observed variables, making the algorithm applicable to many high-dimensional settings. At the heart of our algorithm is a spectral quartet test for determining the relative topology of a quartet of variables from second-order statistics.
Spectral Methods for Learning Multivariate Latent Tree Structure
Anandkumar, Animashree, Chaudhuri, Kamalika, Hsu, Daniel, Kakade, Sham M., Song, Le, Zhang, Tong
This work considers the problem of learning the structure of multivariate linear tree models, which include a variety of directed tree graphical models with continuous, discrete, and mixed latent variables such as linear-Gaussian models, hidden Markov models, Gaussian mixture models, and Markov evolutionary trees. The setting is one where we only have samples from certain observed variables in the tree, and our goal is to estimate the tree structure (i.e., the graph of how the underlying hidden variables are connected to each other and to the observed variables). We propose the Spectral Recursive Grouping algorithm, an efficient and simple bottom-up procedure for recovering the tree structure from independent samples of the observed variables. Our finite sample size bounds for exact recovery of the tree structure reveal certain natural dependencies on underlying statistical and structural properties of the underlying joint distribution. Furthermore, our sample complexity guarantees have no explicit dependence on the dimensionality of the observed variables, making the algorithm applicable to many high-dimensional settings. At the heart of our algorithm is a spectral quartet test for determining the relative topology of a quartet of variables from second-order statistics.
Feedback Message Passing for Inference in Gaussian Graphical Models
Liu, Ying, Chandrasekaran, Venkat, Anandkumar, Animashree, Willsky, Alan S.
While loopy belief propagation (LBP) performs reasonably well for inference in some Gaussian graphical models with cycles, its performance is unsatisfactory for many others. In particular for some models LBP does not converge, and in general when it does converge, the computed variances are incorrect (except for cycle-free graphs for which belief propagation (BP) is non-iterative and exact). In this paper we propose {\em feedback message passing} (FMP), a message-passing algorithm that makes use of a special set of vertices (called a {\em feedback vertex set} or {\em FVS}) whose removal results in a cycle-free graph. In FMP, standard BP is employed several times on the cycle-free subgraph excluding the FVS while a special message-passing scheme is used for the nodes in the FVS. The computational complexity of exact inference is $O(k^2n)$, where $k$ is the number of feedback nodes, and $n$ is the total number of nodes. When the size of the FVS is very large, FMP is intractable. Hence we propose {\em approximate FMP}, where a pseudo-FVS is used instead of an FVS, and where inference in the non-cycle-free graph obtained by removing the pseudo-FVS is carried out approximately using LBP. We show that, when approximate FMP converges, it yields exact means and variances on the pseudo-FVS and exact means throughout the remainder of the graph. We also provide theoretical results on the convergence and accuracy of approximate FMP. In particular, we prove error bounds on variance computation. Based on these theoretical results, we design efficient algorithms to select a pseudo-FVS of bounded size. The choice of the pseudo-FVS allows us to explicitly trade off between efficiency and accuracy. Experimental results show that using a pseudo-FVS of size no larger than $\log(n)$, this procedure converges much more often, more quickly, and provides more accurate results than LBP on the entire graph.
A Large-Deviation Analysis of the Maximum-Likelihood Learning of Markov Tree Structures
Tan, Vincent Y. F., Anandkumar, Animashree, Tong, Lang, Willsky, Alan S.
The problem of maximum-likelihood (ML) estimation of discrete tree-structured distributions is considered. Chow and Liu established that ML-estimation reduces to the construction of a maximum-weight spanning tree using the empirical mutual information quantities as the edge weights. Using the theory of large-deviations, we analyze the exponent associated with the error probability of the event that the ML-estimate of the Markov tree structure differs from the true tree structure, given a set of independently drawn samples. By exploiting the fact that the output of ML-estimation is a tree, we establish that the error exponent is equal to the exponential rate of decay of a single dominant crossover event. We prove that in this dominant crossover event, a non-neighbor node pair replaces a true edge of the distribution that is along the path of edges in the true tree graph connecting the nodes in the non-neighbor pair. Using ideas from Euclidean information theory, we then analyze the scenario of ML-estimation in the very noisy learning regime and show that the error exponent can be approximated as a ratio, which is interpreted as the signal-to-noise ratio (SNR) for learning tree distributions. We show via numerical experiments that in this regime, our SNR approximation is accurate.