Plotting

 Anandkumar, Animashree


Learning Latent Tree Graphical Models

arXiv.org Machine Learning

We study the problem of learning a latent tree graphical model where samples are available only from a subset of variables. We propose two consistent and computationally efficient algorithms for learning minimal latent trees, that is, trees without any redundant hidden nodes. Unlike many existing methods, the observed nodes (or variables) are not constrained to be leaf nodes. Our first algorithm, recursive grouping, builds the latent tree recursively by identifying sibling groups using so-called information distances. One of the main contributions of this work is our second algorithm, which we refer to as CLGrouping. CLGrouping starts with a pre-processing procedure in which a tree over the observed variables is constructed. This global step groups the observed nodes that are likely to be close to each other in the true latent tree, thereby guiding subsequent recursive grouping (or equivalent procedures) on much smaller subsets of variables. This results in more accurate and efficient learning of latent trees. We also present regularized versions of our algorithms that learn latent tree approximations of arbitrary distributions. We compare the proposed algorithms to other methods by performing extensive numerical experiments on various latent tree graphical models such as hidden Markov models and star graphs. In addition, we demonstrate the applicability of our methods on real-world datasets by modeling the dependency structure of monthly stock returns in the S&P index and of the words in the 20 newsgroups dataset.


Learning Gaussian Tree Models: Analysis of Error Exponents and Extremal Structures

arXiv.org Machine Learning

The problem of learning tree-structured Gaussian graphical models from independent and identically distributed (i.i.d.) samples is considered. The influence of the tree structure and the parameters of the Gaussian distribution on the learning rate as the number of samples increases is discussed. Specifically, the error exponent corresponding to the event that the estimated tree structure differs from the actual unknown tree structure of the distribution is analyzed. Finding the error exponent reduces to a least-squares problem in the very noisy learning regime. In this regime, it is shown that the extremal tree structure that minimizes the error exponent is the star for any fixed set of correlation coefficients on the edges of the tree. If the magnitudes of all the correlation coefficients are less than 0.63, it is also shown that the tree structure that maximizes the error exponent is the Markov chain. In other words, the star and the chain graphs represent the hardest and the easiest structures to learn in the class of tree-structured Gaussian graphical models. This result can also be intuitively explained by correlation decay: pairs of nodes which are far apart, in terms of graph distance, are unlikely to be mistaken as edges by the maximum-likelihood estimator in the asymptotic regime.