Goto

Collaborating Authors

 Anandkumar, Anima


Score Function Features for Discriminative Learning

arXiv.org Machine Learning

Feature learning forms the cornerstone for tackling challenging learning problems in domains such as speech, computer vision and natural language processing. In this paper, we consider a novel class of matrix and tensor-valued features, which can be pre-trained using unlabeled samples. We present efficient algorithms for extracting discriminative information, given these pre-trained features and labeled samples for any related task. Our class of features are based on higher-order score functions, which capture local variations in the probability density function of the input. We establish a theoretical framework to characterize the nature of discriminative information that can be extracted from score-function features, when used in conjunction with labeled samples. We employ efficient spectral decomposition algorithms (on matrices and tensors) for extracting discriminative components. The advantage of employing tensor-valued features is that we can extract richer discriminative information in the form of an overcomplete representations. Thus, we present a novel framework for employing generative models of the input for discriminative learning.


Scalable Latent Tree Model and its Application to Health Analytics

arXiv.org Machine Learning

We present an integrated approach to structure and parameter estimation in latent tree graphical models, where some nodes are hidden. Our overall approach follows a "divide-and-conquer" strategy that learns models over small groups of variables and iteratively merges into a global solution. The structure learning involves combinatorial operations such as minimum spanning tree construction and local recursive grouping; the parameter learning is based on the method of moments and on tensor decompositions. Our method is guaranteed to correctly recover the unknown tree structure and the model parameters with low sample complexity for the class of linear multivariate latent tree models which includes discrete and Gaussian distributions, and Gaussian mixtures. Our bulk asynchronous parallel algorithm is implemented in parallel using the OpenMP framework and scales logarithmically with the number of variables and linearly with dimensionality of each variable. Our experiments confirm a high degree of efficiency and accuracy on large datasets of electronic health records. The proposed algorithm also generates intuitive and clinically meaningful disease hierarchies.


Multi-Step Stochastic ADMM in High Dimensions: Applications to Sparse Optimization and Matrix Decomposition

Neural Information Processing Systems

In this paper, we consider a multi-step version of the stochastic ADMM method with efficient guarantees for high-dimensional problems. We first analyze the simple setting, where the optimization problem consists of a loss function and a single regularizer (e.g. sparse optimization), and then extend to the multi-block setting with multiple regularizers and multiple variables (e.g. matrix decomposition into sparse and low rank components). For the sparse optimization problem, our method achieves the minimax rate of $O(s\log d/T)$ for $s$-sparse problems in $d$ dimensions in $T$ steps, and is thus, unimprovable by any method up to constant factors. For the matrix decomposition problem with a general loss function, we analyze the multi-step ADMM with multiple blocks. We establish $O(1/T)$ rate and efficient scaling as the size of matrix grows. For natural noise models (e.g. independent noise), our convergence rate is minimax-optimal. Thus, we establish tight convergence guarantees for multi-block ADMM in high dimensions. Experiments show that for both sparse optimization and matrix decomposition problems, our algorithm outperforms the state-of-the-art methods.


Score Function Features for Discriminative Learning: Matrix and Tensor Framework

arXiv.org Machine Learning

Feature learning forms the cornerstone for tackling challenging learning problems in domains such as speech, computer vision and natural language processing. In this paper, we consider a novel class of matrix and tensor-valued features, which can be pre-trained using unlabeled samples. We present efficient algorithms for extracting discriminative information, given these pre-trained features and labeled samples for any related task. Our class of features are based on higher-order score functions, which capture local variations in the probability density function of the input. We establish a theoretical framework to characterize the nature of discriminative information that can be extracted from score-function features, when used in conjunction with labeled samples. We employ efficient spectral decomposition algorithms (on matrices and tensors) for extracting discriminative components. The advantage of employing tensor-valued features is that we can extract richer discriminative information in the form of an overcomplete representations. Thus, we present a novel framework for employing generative models of the input for discriminative learning.


When are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity

Neural Information Processing Systems

Overcomplete latent representations have been very popular for unsupervised feature learning in recent years. In this paper, we specify which overcomplete models can be identified given observable moments of a certain order. We consider probabilistic admixture or topic models in the overcomplete regime, where the number of latent topics can greatly exceed the size of the observed word vocabulary. While general overcomplete topic models are not identifiable, we establish {\em generic} identifiability under a constraint, referred to as {\em topic persistence}. Our sufficient conditions for identifiability involve a novel set of higher order'' expansion conditions on the {\em topic-word matrix} or the {\em population structure} of the model. This set of higher-order expansion conditions allow for overcomplete models, and require the existence of a perfect matching from latent topics to higher order observed words. We establish that random structured topic models are identifiable w.h.p. in the overcomplete regime. Our identifiability results allow for general (non-degenerate) distributions for modeling the topic proportions, and thus, we can handle arbitrarily correlated topics in our framework. Our identifiability results imply uniqueness of a class of tensor decompositions with structured sparsity which is contained in the class of {\em Tucker} decompositions, but is more general than the {\em Candecomp/Parafac} (CP) decomposition."


A Tensor Approach to Learning Mixed Membership Community Models

arXiv.org Machine Learning

Community detection is the task of detecting hidden communities from observed interactions. Guaranteed community detection has so far been mostly limited to models with non-overlapping communities such as the stochastic block model. In this paper, we remove this restriction, and provide guaranteed community detection for a family of probabilistic network models with overlapping communities, termed as the mixed membership Dirichlet model, first introduced by Airoldi et al. This model allows for nodes to have fractional memberships in multiple communities and assumes that the community memberships are drawn from a Dirichlet distribution. Moreover, it contains the stochastic block model as a special case. We propose a unified approach to learning these models via a tensor spectral decomposition method. Our estimator is based on low-order moment tensor of the observed network, consisting of 3-star counts. Our learning method is fast and is based on simple linear algebraic operations, e.g. singular value decomposition and tensor power iterations. We provide guaranteed recovery of community memberships and model parameters and present a careful finite sample analysis of our learning method. As an important special case, our results match the best known scaling requirements for the (homogeneous) stochastic block model.


Learning Mixtures of Tree Graphical Models

Neural Information Processing Systems

We consider unsupervised estimation of mixtures of discrete graphical models, where the class variable is hidden and each mixture component can have a potentially different Markov graph structure and parameters over the observed variables. We propose a novel method for estimating the mixture components with provable guarantees. Our output is a tree-mixture model which serves as a good approximation to the underlying graphical model mixture. The sample and computational requirements for our method scale as $\poly(p, r)$, for an $r$-component mixture of $p$-variate graphical models, for a wide class of models which includes tree mixtures and mixtures over bounded degree graphs.


A Spectral Algorithm for Latent Dirichlet Allocation

Neural Information Processing Systems

Topic modeling is a generalization of clustering that posits that observations (words in a document) are generated by \emph{multiple} latent factors (topics), as opposed to just one. This increased representational power comes at the cost of a more challenging unsupervised learning problem of estimating the topic-word distributions when only words are observed, and the topics are hidden. This work provides a simple and efficient learning procedure that is guaranteed to recover the parameters for a wide class of topic models, including Latent Dirichlet Allocation (LDA). For LDA, the procedure correctly recovers both the topic-word distributions and the parameters of the Dirichlet prior over the topic mixtures, using only trigram statistics (\emph{i.e.}, third order moments, which may be estimated with documents containing just three words). The method, called Excess Correlation Analysis, is based on a spectral decomposition of low-order moments via two singular value decompositions (SVDs). Moreover, the algorithm is scalable, since the SVDs are carried out only on $k \times k$ matrices, where $k$ is the number of latent factors (topics) and is typically much smaller than the dimension of the observation (word) space.


Latent Graphical Model Selection: Efficient Methods for Locally Tree-like Graphs

Neural Information Processing Systems

Graphical model selection refers to the problem of estimating the unknown graph structure given observations at the nodes in the model. We consider a challenging instance of this problem when some of the nodes are latent or hidden. We characterize conditions for tractable graph estimation and develop efficient methods with provable guarantees. We consider the class of Ising models Markov on locally tree-like graphs, which are in the regime of correlation decay. We propose an efficient method for graph estimation, and establish its structural consistency when the number of samples $n$ scales as $n = \Omega(\theta_{\min}^{-\delta \eta(\eta+1)-2}\log p)$, where $\theta_{\min}$ is the minimum edge potential, $\delta$ is the depth (i.e., distance from a hidden node to the nearest observed nodes), and $\eta$ is a parameter which depends on the minimum and maximum node and edge potentials in the Ising model. The proposed method is practical to implement and provides flexibility to control the number of latent variables and the cycle lengths in the output graph. We also present necessary conditions for graph estimation by any method and show that our method nearly matches the lower bound on sample requirements.