Anand, Avinash
Mathify: Evaluating Large Language Models on Mathematical Problem Solving Tasks
Anand, Avinash, Gupta, Mohit, Prasad, Kritarth, Singla, Navya, Sanjeev, Sanjana, Kumar, Jatin, Shivam, Adarsh Raj, Shah, Rajiv Ratn
The rapid progress in the field of natural language processing (NLP) systems and the expansion of large language models (LLMs) have opened up numerous opportunities in the field of education and instructional methods. These advancements offer the potential for tailored learning experiences and immediate feedback, all delivered through accessible and cost-effective services. One notable application area for this technological advancement is in the realm of solving mathematical problems. Mathematical problem-solving not only requires the ability to decipher complex problem statements but also the skill to perform precise arithmetic calculations at each step of the problem-solving process. However, the evaluation of the arithmetic capabilities of large language models remains an area that has received relatively little attention. In response, we introduce an extensive mathematics dataset called "MathQuest" sourced from the 11th and 12th standard Mathematics NCERT textbooks. This dataset encompasses mathematical challenges of varying complexity and covers a wide range of mathematical concepts. Utilizing this dataset, we conduct fine-tuning experiments with three prominent LLMs: LLaMA-2, WizardMath, and MAmmoTH. These fine-tuned models serve as benchmarks for evaluating their performance on our dataset. Our experiments reveal that among the three models, MAmmoTH-13B emerges as the most proficient, achieving the highest level of competence in solving the presented mathematical problems. Consequently, MAmmoTH-13B establishes itself as a robust and dependable benchmark for addressing NCERT mathematics problems.
RanLayNet: A Dataset for Document Layout Detection used for Domain Adaptation and Generalization
Anand, Avinash, Jaiswal, Raj, Gupta, Mohit, Bangar, Siddhesh S, Bhuyan, Pijush, Lal, Naman, Singh, Rajeev, Jha, Ritika, Shah, Rajiv Ratn, Satoh, Shin'ichi
Large ground-truth datasets and recent advances in deep learning techniques have been useful for layout detection. However, because of the restricted layout diversity of these datasets, training on them requires a sizable number of annotated instances, which is both expensive and time-consuming. As a result, differences between the source and target domains may significantly impact how well these models function. To solve this problem, domain adaptation approaches have been developed that use a small quantity of labeled data to adjust the model to the target domain. In this research, we introduced a synthetic document dataset called RanLayNet, enriched with automatically assigned labels denoting spatial positions, ranges, and types of layout elements. The primary aim of this endeavor is to develop a versatile dataset capable of training models with robustness and adaptability to diverse document formats. Through empirical experimentation, we demonstrate that a deep layout identification model trained on our dataset exhibits enhanced performance compared to a model trained solely on actual documents. Moreover, we conduct a comparative analysis by fine-tuning inference models using both PubLayNet and IIIT-AR-13K datasets on the Doclaynet dataset. Our findings emphasize that models enriched with our dataset are optimal for tasks such as achieving 0.398 and 0.588 mAP95 score in the scientific document domain for the TABLE class.
MM-PhyRLHF: Reinforcement Learning Framework for Multimodal Physics Question-Answering
Anand, Avinash, Kapuriya, Janak, Kirtani, Chhavi, Singh, Apoorv, Saraf, Jay, Lal, Naman, Kumar, Jatin, Shivam, Adarsh Raj, Verma, Astha, Shah, Rajiv Ratn, Zimmermann, Roger
Recent advancements in LLMs have shown their significant potential in tasks like text summarization and generation. Yet, they often encounter difficulty while solving complex physics problems that require arithmetic calculation and a good understanding of concepts. Moreover, many physics problems include images that contain important details required to understand the problem's context. We propose an LMM-based chatbot to answer multimodal physics MCQs. For domain adaptation, we utilize the MM-PhyQA dataset comprising Indian high school-level multimodal physics problems. To improve the LMM's performance, we experiment with two techniques, RLHF (Reinforcement Learning from Human Feedback) and Image Captioning. In image captioning, we add a detailed explanation of the diagram in each image, minimizing hallucinations and image processing errors. We further explore the integration of Reinforcement Learning from Human Feedback (RLHF) methodology inspired by the ranking approach in RLHF to enhance the human-like problem-solving abilities of the models. The RLHF approach incorporates human feedback into the learning process of LLMs, improving the model's problem-solving skills, truthfulness, and reasoning capabilities, minimizing the hallucinations in the answers, and improving the quality instead of using vanilla-supervised fine-tuned models. We employ the LLaVA open-source model to answer multimodal physics MCQs and compare the performance with and without using RLHF.
KG-CTG: Citation Generation through Knowledge Graph-guided Large Language Models
Anand, Avinash, Gupta, Mohit, Prasad, Kritarth, Goel, Ujjwal, Lal, Naman, Verma, Astha, Shah, Rajiv Ratn
Citation Text Generation (CTG) is a task in natural language processing (NLP) that aims to produce text that accurately cites or references a cited document within a source document. In CTG, the generated text draws upon contextual cues from both the source document and the cited paper, ensuring accurate and relevant citation information is provided. Previous work in the field of citation generation is mainly based on the text summarization of documents. Following this, this paper presents a framework, and a comparative study to demonstrate the use of Large Language Models (LLMs) for the task of citation generation. Also, we have shown the improvement in the results of citation generation by incorporating the knowledge graph relations of the papers in the prompt for the LLM to better learn the relationship between the papers. To assess how well our model is performing, we have used a subset of standard S2ORC dataset, which only consists of computer science academic research papers in the English Language. Vicuna performs best for this task with 14.15 Meteor, 12.88 Rouge-1, 1.52 Rouge-2, and 10.94 Rouge-L. Also, Alpaca performs best, and improves the performance by 36.98% in Rouge-1, and 33.14% in Meteor by including knowledge graphs.
MM-PhyQA: Multimodal Physics Question-Answering With Multi-Image CoT Prompting
Anand, Avinash, Kapuriya, Janak, Singh, Apoorv, Saraf, Jay, Lal, Naman, Verma, Astha, Gupta, Rushali, Shah, Rajiv
While Large Language Models (LLMs) can achieve human-level performance in various tasks, they continue to face challenges when it comes to effectively tackling multi-step physics reasoning tasks. To identify the shortcomings of existing models and facilitate further research in this area, we curated a novel dataset, MM-PhyQA, which comprises well-constructed, high schoollevel multimodal physics problems. By evaluating the performance of contemporary LLMs that are publicly available, both with and without the incorporation of multimodal elements in these problems, we aim to shed light on their capabilities. For generating answers for questions consisting of multimodal input (in this case, images and text) we employed Zero-shot prediction using GPT-4 and utilized LLaVA (LLaVA and LLaVA-1.5), the latter of which were fine-tuned on our dataset. For evaluating the performance of LLMs consisting solely of textual input, we tested the performance of the base and fine-tuned versions of the Mistral-7B and LLaMA2-7b models. We also showcased the performance of the novel Multi-Image Chain-of-Thought (MI-CoT) Prompting technique, which when used to train LLaVA-1.5 13b yielded the best results when tested on our dataset, with superior scores in most metrics and the highest accuracy of 71.65% on the test set.
Advancements in Scientific Controllable Text Generation Methods
Goel, Arnav, Hira, Medha, Anand, Avinash, Bangar, Siddhesh, Shah, Dr. Rajiv Ratn
The previous work on controllable text generation is organized using a new schema we provide in this study. Seven components make up the schema, and each one is crucial to the creation process. To accomplish controlled generation for scientific literature, we describe the various modulation strategies utilised to modulate each of the seven components. We also offer a theoretical study and qualitative examination of these methods. This insight makes possible new architectures based on combinations of these components. Future research will compare these methods empirically to learn more about their strengths and utility.