Goto

Collaborating Authors

 Anagnostidis, Sotiris


Dynamic Context Pruning for Efficient and Interpretable Autoregressive Transformers

arXiv.org Artificial Intelligence

Autoregressive Transformers adopted in Large Language Models (LLMs) are hard to scale to long sequences. Despite several works trying to reduce their computational cost, most of LLMs still adopt attention layers between all pairs of tokens in the sequence, thus incurring a quadratic cost. In this study, we present a novel approach that dynamically prunes contextual information while preserving the model's expressiveness, resulting in reduced memory and computational requirements during inference. Our method employs a learnable mechanism that determines which uninformative tokens can be dropped from the context at any point across the generation process. By doing so, our approach not only addresses performance concerns but also enhances interpretability, providing valuable insight into the model's decision-making process. Our technique can be applied to existing pre-trained models through a straightforward fine-tuning process, and the pruning strength can be specified by a sparsity parameter. Notably, our empirical findings demonstrate that we can effectively prune up to 80\% of the context without significant performance degradation on downstream tasks, offering a valuable tool for mitigating inference costs. Our reference implementation achieves up to $2\times$ increase in inference throughput and even greater memory savings.


The Curious Case of Benign Memorization

arXiv.org Artificial Intelligence

Despite the empirical advances of deep learning across a variety of learning tasks, our theoretical understanding of its success is still very restricted. One of the key challenges is the overparametrized nature of modern models, enabling complete overfitting of the data even if the labels are randomized, i.e. networks can completely \textit{memorize} all given patterns. While such a memorization capacity seems worrisome, in this work we show that under training protocols that include \textit{data augmentation}, neural networks learn to memorize entirely random labels in a benign way, i.e. they learn embeddings that lead to highly non-trivial performance under nearest neighbour probing. We demonstrate that deep models have the surprising ability to separate noise from signal by distributing the task of memorization and feature learning to different layers. As a result, only the very last layers are used for memorization, while preceding layers encode performant features which remain largely unaffected by the label noise. We explore the intricate role of the augmentations used for training and identify a memorization-generalization trade-off in terms of their diversity, marking a clear distinction to all previous works. Finally, we give a first explanation for the emergence of benign memorization by showing that \textit{malign} memorization under data augmentation is infeasible due to the insufficient capacity of the model for the increased sample size. As a consequence, the network is forced to leverage the correlated nature of the augmentations and as a result learns meaningful features. To complete the picture, a better theory of feature learning in deep neural networks is required to fully understand the origins of this phenomenon.


Cosmology from Galaxy Redshift Surveys with PointNet

arXiv.org Artificial Intelligence

In recent years, deep learning approaches have achieved state-of-the-art results in the analysis of point cloud data. In cosmology, galaxy redshift surveys resemble such a permutation invariant collection of positions in space. These surveys have so far mostly been analysed with two-point statistics, such as power spectra and correlation functions. The usage of these summary statistics is best justified on large scales, where the density field is linear and Gaussian. However, in light of the increased precision expected from upcoming surveys, the analysis of -- intrinsically non-Gaussian -- small angular separations represents an appealing avenue to better constrain cosmological parameters. In this work, we aim to improve upon two-point statistics by employing a \textit{PointNet}-like neural network to regress the values of the cosmological parameters directly from point cloud data. Our implementation of PointNets can analyse inputs of $\mathcal{O}(10^4) - \mathcal{O}(10^5)$ galaxies at a time, which improves upon earlier work for this application by roughly two orders of magnitude. Additionally, we demonstrate the ability to analyse galaxy redshift survey data on the lightcone, as opposed to previously static simulation boxes at a given fixed redshift.