Not enough data to create a plot.
Try a different view from the menu above.
An, Tai
A Structured Reasoning Framework for Unbalanced Data Classification Using Probabilistic Models
Du, Junliang, Dou, Shiyu, Yang, Bohuan, Hu, Jiacheng, An, Tai
This paper studies a Markov network model for unbalanced data, aiming to solve the problems of classification bias and insufficient minority class recognition ability of traditional machine learning models in environments with uneven class distribution. By constructing joint probability distribution and conditional dependency, the model can achieve global modeling and reasoning optimization of sample categories. The study introduced marginal probability estimation and weighted loss optimization strategies, combined with regularization constraints and structured reasoning methods, effectively improving the generalization ability and robustness of the model. In the experimental stage, a real credit card fraud detection dataset was selected and compared with models such as logistic regression, support vector machine, random forest and XGBoost. The experimental results show that the Markov network performs well in indicators such as weighted accuracy, F1 score, and AUC-ROC, significantly outperforming traditional classification models, demonstrating its strong decision-making ability and applicability in unbalanced data scenarios. Future research can focus on efficient model training, structural optimization, and deep learning integration in large-scale unbalanced data environments and promote its wide application in practical applications such as financial risk control, medical diagnosis, and intelligent monitoring.
Contrastive Learning for Cold Start Recommendation with Adaptive Feature Fusion
Hu, Jiacheng, An, Tai, Yu, Zidong, Du, Junliang, Luo, Yuanshuai
This paper proposes a cold start recommendation model that integrates contrastive learning, aiming to solve the problem of performance degradation of recommendation systems in cold start scenarios due to the scarcity of user and item interaction data. The model dynamically adjusts the weights of key features through an adaptive feature selection module and effectively integrates user attributes, item meta-information, and contextual features by combining a multimodal feature fusion mechanism, thereby improving recommendation performance. In addition, the model introduces a contrastive learning mechanism to enhance the robustness and generalization ability of feature representation by constructing positive and negative sample pairs. Experiments are conducted on the MovieLens-1M dataset. The results show that the proposed model significantly outperforms mainstream recommendation methods such as Matrix Factorization, LightGBM, DeepFM, and AutoRec in terms of HR, NDCG, MRR, and Recall, especially in cold start scenarios. Ablation experiments further verify the key role of each module in improving model performance, and the learning rate sensitivity analysis shows that a moderate learning rate is crucial to the optimization effect of the model. This study not only provides a new solution to the cold start problem but also provides an important reference for the application of contrastive learning in recommendation systems. In the future, this model is expected to play a role in a wider range of scenarios, such as real-time recommendation and cross-domain recommendation.
Object Detection for Medical Image Analysis: Insights from the RT-DETR Model
He, Weijie, Zhang, Yuwei, Xu, Ting, An, Tai, Liang, Yingbin, Zhang, Bo
Deep learning has emerged as a transformative approach for solving complex pattern recognition and object detection challenges. This paper focuses on the application of a novel detection framework based on the RT-DETR model for analyzing intricate image data, particularly in areas such as diabetic retinopathy detection. Diabetic retinopathy, a leading cause of vision loss globally, requires accurate and efficient image analysis to identify early-stage lesions. The proposed RT-DETR model, built on a Transformer-based architecture, excels at processing high-dimensional and complex visual data with enhanced robustness and accuracy. Comparative evaluations with models such as YOLOv5, YOLOv8, SSD, and DETR demonstrate that RT-DETR achieves superior performance across precision, recall, mAP50, and mAP50-95 metrics, particularly in detecting small-scale objects and densely packed targets. This study underscores the potential of Transformer-based models like RT-DETR for advancing object detection tasks, offering promising applications in medical imaging and beyond.