Plotting

 Amsaad, Fathi


Unsupervised Learning: Comparative Analysis of Clustering Techniques on High-Dimensional Data

arXiv.org Machine Learning

--This paper presents a comprehensive comparative analysis of prominent clustering algorithms--K-means, DB-SCAN, and Spectral Clustering--on high-dimensional datasets. We introduce a novel evaluation framework that assesses clustering performance across multiple dimensionality reduction techniques (PCA, t-SNE, and UMAP) using diverse quantitative metrics. Experiments conducted on MNIST, Fashion-MNIST, and UCI HAR datasets reveal that preprocessing with UMAP consistently improves clustering quality across all algorithms, with Spectral Clustering demonstrating superior performance on complex manifold structures. Our findings show that algorithm selection should be guided by data characteristics, with K-means excelling in computational efficiency, DBSCAN in handling irregular clusters, and Spectral Clustering in capturing complex relationships. This research contributes a systematic approach for evaluating and selecting clustering techniques for high-dimensional data applications.


AI-Driven Predictive Analytics Approach for Early Prognosis of Chronic Kidney Disease Using Ensemble Learning and Explainable AI

arXiv.org Artificial Intelligence

Chronic Kidney Disease (CKD) is one of the widespread Chronic diseases with no known ultimo cure and high morbidity. Research demonstrates that progressive Chronic Kidney Disease (CKD) is a heterogeneous disorder that significantly impacts kidney structure and functions, eventually leading to kidney failure. With the progression of time, chronic kidney disease has moved from a life-threatening disease affecting few people to a common disorder of varying severity. The goal of this research is to visualize dominating features, feature scores, and values exhibited for early prognosis and detection of CKD using ensemble learning and explainable AI. For that, an AI-driven predictive analytics approach is proposed to aid clinical practitioners in prescribing lifestyle modifications for individual patients to reduce the rate of progression of this disease. Our dataset is collected on body vitals from individuals with CKD and healthy subjects to develop our proposed AI-driven solution accurately. In this regard, blood and urine test results are provided, and ensemble tree-based machine-learning models are applied to predict unseen cases of CKD. Our research findings are validated after lengthy consultations with nephrologists. Our experiments and interpretation results are compared with existing explainable AI applications in various healthcare domains, including CKD. The comparison shows that our developed AI models, particularly the Random Forest model, have identified more features as significant contributors than XgBoost. Interpretability (I), which measures the ratio of important to masked features, indicates that our XgBoost model achieved a higher score, specifically a Fidelity of 98\%, in this metric and naturally in the FII index compared to competing models.