Not enough data to create a plot.
Try a different view from the menu above.
Alsalemi, Abdullah
From Traditional to Deep Learning Approaches in Whole Slide Image Registration: A Methodological Review
Elhaminia, Behnaz, Alsalemi, Abdullah, Nasir, Esha, Jahanifar, Mostafa, Awan, Ruqayya, Young, Lawrence S., Rajpoot, Nasir M., Minhas, Fayyaz, Raza, Shan E Ahmed
Whole slide image (WSI) registration is an essential task for analysing the tumour microenvironment (TME) in histopathology. It involves the alignment of spatial information between WSIs of the same section or serial sections of a tissue sample. The tissue sections are usually stained with single or multiple biomarkers before imaging, and the goal is to identify neighbouring nuclei along the Z-axis for creating a 3D image or identifying subclasses of cells in the TME. This task is considerably more challenging compared to radiology image registration, such as magnetic resonance imaging or computed tomography, due to various factors. These include gigapixel size of images, variations in appearance between differently stained tissues, changes in structure and morphology between non-consecutive sections, and the presence of artefacts, tears, and deformations. Currently, there is a noticeable gap in the literature regarding a review of the current approaches and their limitations, as well as the challenges and opportunities they present. We aim to provide a comprehensive understanding of the available approaches and their application for various purposes. Furthermore, we investigate current deep learning methods used for WSI registration, emphasising their diverse methodologies. We examine the available datasets and explore tools and software employed in the field. Finally, we identify open challenges and potential future trends in this area of research.
TIAViz: A Browser-based Visualization Tool for Computational Pathology Models
Eastwood, Mark, Pocock, John, Jahanifar, Mostafa, Shephard, Adam, Habib, Skiros, Alzaid, Ethar, Alsalemi, Abdullah, Robertus, Jan Lukas, Rajpoot, Nasir, Raza, Shan, Minhas, Fayyaz
Digital pathology has gained significant traction in modern healthcare systems. This shift from optical microscopes to digital imagery brings with it the potential for improved diagnosis, efficiency, and the integration of AI tools into the pathologists workflow. A critical aspect of this is visualization. Throughout the development of a machine learning (ML) model in digital pathology, it is crucial to have flexible, openly available tools to visualize models, from their outputs and predictions to the underlying annotations and images used to train or test a model. We introduce TIAViz, a Python-based visualization tool built into TIAToolbox which allows flexible, interactive, fully zoomable overlay of a wide variety of information onto whole slide images, including graphs, heatmaps, segmentations, annotations and other WSIs. The UI is browser-based, allowing use either locally, on a remote machine, or on a server to provide publicly available demos. This tool is open source and is made available at: https://github.com/TissueImageAnalytics/tiatoolbox and via pip installation (pip install tiatoolbox) and conda as part of TIAToolbox.
Edge AI for Internet of Energy: Challenges and Perspectives
Himeur, Yassine, Sayed, Aya Nabil, Alsalemi, Abdullah, Bensaali, Faycal, Amira, Abbes
The digital landscape of the Internet of Energy (IoE) is on the brink of a revolutionary transformation with the integration of edge Artificial Intelligence (AI). This comprehensive review elucidates the promise and potential that edge AI holds for reshaping the IoE ecosystem. Commencing with a meticulously curated research methodology, the article delves into the myriad of edge AI techniques specifically tailored for IoE. The myriad benefits, spanning from reduced latency and real-time analytics to the pivotal aspects of information security, scalability, and cost-efficiency, underscore the indispensability of edge AI in modern IoE frameworks. As the narrative progresses, readers are acquainted with pragmatic applications and techniques, highlighting on-device computation, secure private inference methods, and the avant-garde paradigms of AI training on the edge. A critical analysis follows, offering a deep dive into the present challenges including security concerns, computational hurdles, and standardization issues. However, as the horizon of technology ever expands, the review culminates in a forward-looking perspective, envisaging the future symbiosis of 5G networks, federated edge AI, deep reinforcement learning, and more, painting a vibrant panorama of what the future beholds. For anyone vested in the domains of IoE and AI, this review offers both a foundation and a visionary lens, bridging the present realities with future possibilities.
Appliance-Level Monitoring with Micro-Moment Smart Plugs
Alsalemi, Abdullah, Himeur, Yassine, Bensaali, Faycal, Amira, Abbes
Human population are striving against energy-related issues that not only affects society and the development of the world, but also causes global warming. A variety of broad approaches have been developed by both industry and the research community. However, there is an ever increasing need for comprehensive, end-to-end solutions aimed at transforming human behavior rather than device metrics and benchmarks. In this paper, a micro-moment-based smart plug system is proposed as part of a larger multi-appliance energy efficiency program. The smart plug, which includes two sub-units: the power consumption unit and environmental monitoring unit collect energy consumption of appliances along with contextual information, such as temperature, humidity, luminosity and room occupancy respectively. The plug also allows home automation capability. With the accompanying mobile application, end-users can visualize energy consumption data along with ambient environmental information. Current implementation results show that the proposed system delivers cost-effective deployment while maintaining adequate computation and wireless performance.
The emergence of Explainability of Intelligent Systems: Delivering Explainable and Personalised Recommendations for Energy Efficiency
Sardianos, Christos, Varlamis, Iraklis, Chronis, Christos, Dimitrakopoulos, George, Alsalemi, Abdullah, Himeur, Yassine, Bensaali, Faycal, Amira, Abbes
The recent advances in artificial intelligence namely in machine learning and deep learning, have boosted the performance of intelligent systems in several ways. This gave rise to human expectations, but also created the need for a deeper understanding of how intelligent systems think and decide. The concept of explainability appeared, in the extent of explaining the internal system mechanics in human terms. Recommendation systems are intelligent systems that support human decision making, and as such, they have to be explainable in order to increase user trust and improve the acceptance of recommendations. In this work, we focus on a context-aware recommendation system for energy efficiency and develop a mechanism for explainable and persuasive recommendations, which are personalized to user preferences and habits. The persuasive facts either emphasize on the economical saving prospects (Econ) or on a positive ecological impact (Eco) and explanations provide the reason for recommending an energy saving action. Based on a study conducted using a Telegram bot, different scenarios have been validated with actual data and human feedback. Current results show a total increase of 19\% on the recommendation acceptance ratio when both economical and ecological persuasive facts are employed. This revolutionary approach on recommendation systems, demonstrates how intelligent recommendations can effectively encourage energy saving behavior.
Data fusion strategies for energy efficiency in buildings: Overview, challenges and novel orientations
Himeur, Yassine, Alsalemi, Abdullah, Al-Kababji, Ayman, Bensaali, Faycal, Amira, Abbes
Recently, tremendous interest has been devoted to develop data fusion strategies for energy efficiency in buildings, where various kinds of information can be processed. However, applying the appropriate data fusion strategy to design an efficient energy efficiency system is not straightforward; it requires a priori knowledge of existing fusion strategies, their applications and their properties. To this regard, seeking to provide the energy research community with a better understanding of data fusion strategies in building energy saving systems, their principles, advantages, and potential applications, this paper proposes an extensive survey of existing data fusion mechanisms deployed to reduce excessive consumption and promote sustainability. We investigate their conceptualizations, advantages, challenges and drawbacks, as well as performing a taxonomy of existing data fusion strategies and other contributing factors. Following, a comprehensive comparison of the state-of-the-art data fusion based energy efficiency frameworks is conducted using various parameters, including data fusion level, data fusion techniques, behavioral change influencer, behavioral change incentive, recorded data, platform architecture, IoT technology and application scenario. Moreover, a novel method for electrical appliance identification is proposed based on the fusion of 2D local texture descriptors, where 1D power signals are transformed into 2D space and treated as images. The empirical evaluation, conducted on three real datasets, shows promising performance, in which up to 99.68% accuracy and 99.52% F1 score have been attained. In addition, various open research challenges and future orientations to improve data fusion based energy efficiency ecosystems are explored.