Not enough data to create a plot.
Try a different view from the menu above.
Alon, Nitay
Mind Your Theory: Theory of Mind Goes Deeper Than Reasoning
Wagner, Eitan, Alon, Nitay, Barnby, Joseph M., Abend, Omri
Theory of Mind (ToM) capabilities in LLMs have recently become a central object of investigation. Cognitive science distinguishes between two steps required for ToM tasks: 1) determine whether to invoke ToM, which includes the appropriate Depth of Mentalizing (DoM), or level of recursion required to complete a task; and 2) applying the correct inference given the DoM. In this position paper, we first identify several lines of work in different communities in AI, including LLM benchmarking, ToM add-ons, ToM probing, and formal models for ToM. We argue that recent work in AI tends to focus exclusively on the second step which are typically framed as static logic problems. We conclude with suggestions for improved evaluation of ToM capabilities inspired by dynamic environments used in cognitive tasks.
Detecting and Deterring Manipulation in a Cognitive Hierarchy
Alon, Nitay, Schulz, Lion, Barnby, Joseph M., Rosenschein, Jeffrey S., Dayan, Peter
Social agents with finitely nested opponent models are vulnerable to manipulation by agents with deeper reasoning and more sophisticated opponent modelling. This imbalance, rooted in logic and the theory of recursive modelling frameworks, cannot be solved directly. We propose a computational framework, $\aleph$-IPOMDP, augmenting model-based RL agents' Bayesian inference with an anomaly detection algorithm and an out-of-belief policy. Our mechanism allows agents to realize they are being deceived, even if they cannot understand how, and to deter opponents via a credible threat. We test this framework in both a mixed-motive and zero-sum game. Our results show the $\aleph$ mechanism's effectiveness, leading to more equitable outcomes and less exploitation by more sophisticated agents. We discuss implications for AI safety, cybersecurity, cognitive science, and psychiatry.
Emergent Dominance Hierarchies in Reinforcement Learning Agents
Rachum, Ram, Nakar, Yonatan, Tomlinson, Bill, Alon, Nitay, Mirsky, Reuth
Modern Reinforcement Learning (RL) algorithms are able to outperform humans in a wide variety of tasks. Multi-agent reinforcement learning (MARL) settings present additional challenges, and successful cooperation in mixed-motive groups of agents depends on a delicate balancing act between individual and group objectives. Social conventions and norms, often inspired by human institutions, are used as tools for striking this balance. In this paper, we examine a fundamental, well-studied social convention that underlies cooperation in both animal and human societies: dominance hierarchies. We adapt the ethological theory of dominance hierarchies to artificial agents, borrowing the established terminology and definitions with as few amendments as possible. We demonstrate that populations of RL agents, operating without explicit programming or intrinsic rewards, can invent, learn, enforce, and transmit a dominance hierarchy to new populations. The dominance hierarchies that emerge have a similar structure to those studied in chickens, mice, fish, and other species.