Not enough data to create a plot.
Try a different view from the menu above.
Almeida, Diogo
GPT-4 Technical Report
OpenAI, null, :, null, Achiam, Josh, Adler, Steven, Agarwal, Sandhini, Ahmad, Lama, Akkaya, Ilge, Aleman, Florencia Leoni, Almeida, Diogo, Altenschmidt, Janko, Altman, Sam, Anadkat, Shyamal, Avila, Red, Babuschkin, Igor, Balaji, Suchir, Balcom, Valerie, Baltescu, Paul, Bao, Haiming, Bavarian, Mo, Belgum, Jeff, Bello, Irwan, Berdine, Jake, Bernadett-Shapiro, Gabriel, Berner, Christopher, Bogdonoff, Lenny, Boiko, Oleg, Boyd, Madelaine, Brakman, Anna-Luisa, Brockman, Greg, Brooks, Tim, Brundage, Miles, Button, Kevin, Cai, Trevor, Campbell, Rosie, Cann, Andrew, Carey, Brittany, Carlson, Chelsea, Carmichael, Rory, Chan, Brooke, Chang, Che, Chantzis, Fotis, Chen, Derek, Chen, Sully, Chen, Ruby, Chen, Jason, Chen, Mark, Chess, Ben, Cho, Chester, Chu, Casey, Chung, Hyung Won, Cummings, Dave, Currier, Jeremiah, Dai, Yunxing, Decareaux, Cory, Degry, Thomas, Deutsch, Noah, Deville, Damien, Dhar, Arka, Dohan, David, Dowling, Steve, Dunning, Sheila, Ecoffet, Adrien, Eleti, Atty, Eloundou, Tyna, Farhi, David, Fedus, Liam, Felix, Niko, Fishman, Simón Posada, Forte, Juston, Fulford, Isabella, Gao, Leo, Georges, Elie, Gibson, Christian, Goel, Vik, Gogineni, Tarun, Goh, Gabriel, Gontijo-Lopes, Rapha, Gordon, Jonathan, Grafstein, Morgan, Gray, Scott, Greene, Ryan, Gross, Joshua, Gu, Shixiang Shane, Guo, Yufei, Hallacy, Chris, Han, Jesse, Harris, Jeff, He, Yuchen, Heaton, Mike, Heidecke, Johannes, Hesse, Chris, Hickey, Alan, Hickey, Wade, Hoeschele, Peter, Houghton, Brandon, Hsu, Kenny, Hu, Shengli, Hu, Xin, Huizinga, Joost, Jain, Shantanu, Jain, Shawn, Jang, Joanne, Jiang, Angela, Jiang, Roger, Jin, Haozhun, Jin, Denny, Jomoto, Shino, Jonn, Billie, Jun, Heewoo, Kaftan, Tomer, Kaiser, Łukasz, Kamali, Ali, Kanitscheider, Ingmar, Keskar, Nitish Shirish, Khan, Tabarak, Kilpatrick, Logan, Kim, Jong Wook, Kim, Christina, Kim, Yongjik, Kirchner, Hendrik, Kiros, Jamie, Knight, Matt, Kokotajlo, Daniel, Kondraciuk, Łukasz, Kondrich, Andrew, Konstantinidis, Aris, Kosic, Kyle, Krueger, Gretchen, Kuo, Vishal, Lampe, Michael, Lan, Ikai, Lee, Teddy, Leike, Jan, Leung, Jade, Levy, Daniel, Li, Chak Ming, Lim, Rachel, Lin, Molly, Lin, Stephanie, Litwin, Mateusz, Lopez, Theresa, Lowe, Ryan, Lue, Patricia, Makanju, Anna, Malfacini, Kim, Manning, Sam, Markov, Todor, Markovski, Yaniv, Martin, Bianca, Mayer, Katie, Mayne, Andrew, McGrew, Bob, McKinney, Scott Mayer, McLeavey, Christine, McMillan, Paul, McNeil, Jake, Medina, David, Mehta, Aalok, Menick, Jacob, Metz, Luke, Mishchenko, Andrey, Mishkin, Pamela, Monaco, Vinnie, Morikawa, Evan, Mossing, Daniel, Mu, Tong, Murati, Mira, Murk, Oleg, Mély, David, Nair, Ashvin, Nakano, Reiichiro, Nayak, Rajeev, Neelakantan, Arvind, Ngo, Richard, Noh, Hyeonwoo, Ouyang, Long, O'Keefe, Cullen, Pachocki, Jakub, Paino, Alex, Palermo, Joe, Pantuliano, Ashley, Parascandolo, Giambattista, Parish, Joel, Parparita, Emy, Passos, Alex, Pavlov, Mikhail, Peng, Andrew, Perelman, Adam, Peres, Filipe de Avila Belbute, Petrov, Michael, Pinto, Henrique Ponde de Oliveira, Michael, null, Pokorny, null, Pokrass, Michelle, Pong, Vitchyr, Powell, Tolly, Power, Alethea, Power, Boris, Proehl, Elizabeth, Puri, Raul, Radford, Alec, Rae, Jack, Ramesh, Aditya, Raymond, Cameron, Real, Francis, Rimbach, Kendra, Ross, Carl, Rotsted, Bob, Roussez, Henri, Ryder, Nick, Saltarelli, Mario, Sanders, Ted, Santurkar, Shibani, Sastry, Girish, Schmidt, Heather, Schnurr, David, Schulman, John, Selsam, Daniel, Sheppard, Kyla, Sherbakov, Toki, Shieh, Jessica, Shoker, Sarah, Shyam, Pranav, Sidor, Szymon, Sigler, Eric, Simens, Maddie, Sitkin, Jordan, Slama, Katarina, Sohl, Ian, Sokolowsky, Benjamin, Song, Yang, Staudacher, Natalie, Such, Felipe Petroski, Summers, Natalie, Sutskever, Ilya, Tang, Jie, Tezak, Nikolas, Thompson, Madeleine, Tillet, Phil, Tootoonchian, Amin, Tseng, Elizabeth, Tuggle, Preston, Turley, Nick, Tworek, Jerry, Uribe, Juan Felipe Cerón, Vallone, Andrea, Vijayvergiya, Arun, Voss, Chelsea, Wainwright, Carroll, Wang, Justin Jay, Wang, Alvin, Wang, Ben, Ward, Jonathan, Wei, Jason, Weinmann, CJ, Welihinda, Akila, Welinder, Peter, Weng, Jiayi, Weng, Lilian, Wiethoff, Matt, Willner, Dave, Winter, Clemens, Wolrich, Samuel, Wong, Hannah, Workman, Lauren, Wu, Sherwin, Wu, Jeff, Wu, Michael, Xiao, Kai, Xu, Tao, Yoo, Sarah, Yu, Kevin, Yuan, Qiming, Zaremba, Wojciech, Zellers, Rowan, Zhang, Chong, Zhang, Marvin, Zhao, Shengjia, Zheng, Tianhao, Zhuang, Juntang, Zhuk, William, Zoph, Barret
We report the development of GPT-4, a large-scale, multimodal model which can accept image and text inputs and produce text outputs. While less capable than humans in many real-world scenarios, GPT-4 exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers. GPT-4 is a Transformer-based model pre-trained to predict the next token in a document. The post-training alignment process results in improved performance on measures of factuality and adherence to desired behavior. A core component of this project was developing infrastructure and optimization methods that behave predictably across a wide range of scales. This allowed us to accurately predict some aspects of GPT-4's performance based on models trained with no more than 1/1,000th the compute of GPT-4.
A Generalizable Approach to Learning Optimizers
Almeida, Diogo, Winter, Clemens, Tang, Jie, Zaremba, Wojciech
A core issue with learning to optimize neural networks has been the lack of generalization to real world problems. To address this, we describe a system designed from a generalization-first perspective, learning to update optimizer hyperparameters instead of model parameters directly using novel features, actions, and a reward function. This system outperforms Adam at all neural network tasks including on modalities not seen during training. We achieve 2x speedups on ImageNet, and a 2.5x speedup on a language modeling task using over 5 orders of magnitude more compute than the training tasks.
Genetic Architect: Discovering Genomic Structure with Learned Neural Architectures
Deming, Laura, Targ, Sasha, Sauder, Nate, Almeida, Diogo, Ye, Chun Jimmie
Each human genome is a 3 billion base pair set of encoding instructions. Decoding the genome using deep learning fundamentally differs from most tasks, as we do not know the full structure of the data and therefore cannot design architectures to suit it. As such, architectures that fit the structure of genomics should be learned not prescribed. Here, we develop a novel search algorithm, applicable across domains, that discovers an optimal architecture which simultaneously learns general genomic patterns and identifies the most important sequence motifs in predicting functional genomic outcomes. The architectures we find using this algorithm succeed at using only RNA expression data to predict gene regulatory structure, learn human-interpretable visualizations of key sequence motifs, and surpass state-of-the-art results on benchmark genomics challenges.
Resnet in Resnet: Generalizing Residual Architectures
Targ, Sasha, Almeida, Diogo, Lyman, Kevin
Residual networks (ResNets) have recently achieved state-of-the-art on challenging computer vision tasks. We introduce Resnet in Resnet (RiR): a deep dual-stream architecture that generalizes ResNets and standard CNNs and is easily implemented with no computational overhead. RiR consistently improves performance over ResNets, outperforms architectures with similar amounts of augmentation on CIFAR-10, and establishes a new state-of-the-art on CIFAR-100.