Plotting

 Alinejad-Rokny, Hamid


Quantification of Large Language Model Distillation

arXiv.org Artificial Intelligence

Model distillation is a fundamental technique in building large language models (LLMs), transferring knowledge from a teacher model to a student model. However, distillation can lead to model homogenization, reducing diversity among models and impairing their ability to robustly handle complex or novel tasks. These limitations underscore the need to systematically quantify the distillation process and its impact. In this work, we propose a framework to evaluate and quantify model distillation. Our method addresses two key aspects: (1) Identifying identity cognition contradictions to assess discrepancies in how models perceive and represent identity-related information, and (2) Analyzing multi-granularity response similarities across models to measure the extent of homogenization. Experimental results demonstrate two key insights: (1) Well-known closed-source and open-source LLMs usually exhibit high distillation degrees, except for Claude, Doubao, and Gemini. (2) Base LLMs show higher distillation degrees compared to aligned LLMs. By offering a systematic approach to improve the transparency of LLM data distillation, we call for LLMs with more independent development and more transparent technical reports to improve LLMs' robustness and safety. The code and data are available under https://github.com/Aegis1863/LLMs-Distillation-Quantification.


xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking

arXiv.org Artificial Intelligence

Safety alignment mechanism are essential for preventing large language models (LLMs) from generating harmful information or unethical content. However, cleverly crafted prompts can bypass these safety measures without accessing the model's internal parameters, a phenomenon known as black-box jailbreak. Existing heuristic black-box attack methods, such as genetic algorithms, suffer from limited effectiveness due to their inherent randomness, while recent reinforcement learning (RL) based methods often lack robust and informative reward signals. To address these challenges, we propose a novel black-box jailbreak method leveraging RL, which optimizes prompt generation by analyzing the embedding proximity between benign and malicious prompts. This approach ensures that the rewritten prompts closely align with the intent of the original prompts while enhancing the attack's effectiveness. Furthermore, we introduce a comprehensive jailbreak evaluation framework incorporating keywords, intent matching, and answer validation to provide a more rigorous and holistic assessment of jailbreak success. Experimental results show the superiority of our approach, achieving state-of-the-art (SOTA) performance on several prominent open and closed-source LLMs, including Qwen2.5-7B-Instruct, Llama3.1-8B-Instruct, and GPT-4o-0806. Our method sets a new benchmark in jailbreak attack effectiveness, highlighting potential vulnerabilities in LLMs. The codebase for this work is available at https://github.com/Aegis1863/xJailbreak.


OpenOmni: Large Language Models Pivot Zero-shot Omnimodal Alignment across Language with Real-time Self-Aware Emotional Speech Synthesis

arXiv.org Artificial Intelligence

Recent advancements in omnimodal learning have been achieved in understanding and generation across images, text, and speech, though mainly within proprietary models. Limited omnimodal datasets and the inherent challenges associated with real-time emotional speech generation have hindered open-source progress. To address these issues, we propose openomni, a two-stage training method combining omnimodal alignment and speech generation to develop a state-of-the-art omnimodal large language model. In the alignment phase, a pre-trained speech model is further trained on text-image tasks to generalize from vision to speech in a (near) zero-shot manner, outperforming models trained on tri-modal datasets. In the speech generation phase, a lightweight decoder facilitates real-time emotional speech through training on speech tasks and preference learning. Experiments demonstrate that openomni consistently improves across omnimodal, vision-language, and speech-language evaluations, enabling natural, emotion-rich dialogues and real-time emotional speech generation.


Small Language Model as Data Prospector for Large Language Model

arXiv.org Artificial Intelligence

The quality of instruction data directly affects the performance of fine-tuned Large Language Models (LLMs). Previously, \cite{li2023one} proposed \texttt{NUGGETS}, which identifies and selects high-quality quality data from a large dataset by identifying those individual instruction examples that can significantly improve the performance of different tasks after being learnt as one-shot instances. In this work, we propose \texttt{SuperNUGGETS}, an improved variant of \texttt{NUGGETS} optimised for efficiency and performance. Our \texttt{SuperNUGGETS} uses a small language model (SLM) instead of a large language model (LLM) to filter the data for outstanding one-shot instances and refines the predefined set of tests. The experimental results show that the performance of \texttt{SuperNUGGETS} only decreases by 1-2% compared to \texttt{NUGGETS}, but the efficiency can be increased by a factor of 58. Compared to the original \texttt{NUGGETS}, our \texttt{SuperNUGGETS} has a higher utility value due to the significantly lower resource consumption.


AutoPatent: A Multi-Agent Framework for Automatic Patent Generation

arXiv.org Artificial Intelligence

As the capabilities of Large Language Models (LLMs) continue to advance, the field of patent processing has garnered increased attention within the natural language processing community. However, the majority of research has been concentrated on classification tasks, such as patent categorization and examination, or on short text generation tasks like patent summarization and patent quizzes. In this paper, we introduce a novel and practical task known as Draft2Patent, along with its corresponding D2P benchmark, which challenges LLMs to generate full-length patents averaging 17K tokens based on initial drafts. Patents present a significant challenge to LLMs due to their specialized nature, standardized terminology, and extensive length. We propose a multi-agent framework called AutoPatent which leverages the LLM-based planner agent, writer agents, and examiner agent with PGTree and RRAG to generate lengthy, intricate, and high-quality complete patent documents. The experimental results demonstrate that our AutoPatent framework significantly enhances the ability to generate comprehensive patents across various LLMs. Furthermore, we have discovered that patents generated solely with the AutoPatent framework based on the Qwen2.5-7B model outperform those produced by larger and more powerful LLMs, such as GPT-4o, Qwen2.5-72B, and LLAMA3.1-70B, in both objective metrics and human evaluations. We will make the data and code available upon acceptance at \url{https://github.com/QiYao-Wang/AutoPatent}.


Empowering Precision Medicine: AI-Driven Schizophrenia Diagnosis via EEG Signals: A Comprehensive Review from 2002-2023

arXiv.org Artificial Intelligence

Schizophrenia (SZ) is a prevalent mental disorder characterized by cognitive, emotional, and behavioral changes. Symptoms of SZ include hallucinations, illusions, delusions, lack of motivation, and difficulties in concentration. Diagnosing SZ involves employing various tools, including clinical interviews, physical examinations, psychological evaluations, the Diagnostic and Statistical Manual of Mental Disorders (DSM), and neuroimaging techniques. Electroencephalography (EEG) recording is a significant functional neuroimaging modality that provides valuable insights into brain function during SZ. However, EEG signal analysis poses challenges for neurologists and scientists due to the presence of artifacts, long-term recordings, and the utilization of multiple channels. To address these challenges, researchers have introduced artificial intelligence (AI) techniques, encompassing conventional machine learning (ML) and deep learning (DL) methods, to aid in SZ diagnosis. This study reviews papers focused on SZ diagnosis utilizing EEG signals and AI methods. The introduction section provides a comprehensive explanation of SZ diagnosis methods and intervention techniques. Subsequently, review papers in this field are discussed, followed by an introduction to the AI methods employed for SZ diagnosis and a summary of relevant papers presented in tabular form. Additionally, this study reports on the most significant challenges encountered in SZ diagnosis, as identified through a review of papers in this field. Future directions to overcome these challenges are also addressed. The discussion section examines the specific details of each paper, culminating in the presentation of conclusions and findings.


Revolutionizing Genomics with Reinforcement Learning Techniques

arXiv.org Artificial Intelligence

In recent years, Reinforcement Learning (RL) has emerged as a powerful tool for solving a wide range of problems, including decision-making and genomics. The exponential growth of raw genomic data over the past two decades has exceeded the capacity of manual analysis, leading to a growing interest in automatic data analysis and processing. RL algorithms are capable of learning from experience with minimal human supervision, making them well-suited for genomic data analysis and interpretation. One of the key benefits of using RL is the reduced cost associated with collecting labeled training data, which is required for supervised learning. While there have been numerous studies examining the applications of Machine Learning (ML) in genomics, this survey focuses exclusively on the use of RL in various genomics research fields, including gene regulatory networks (GRNs), genome assembly, and sequence alignment. We present a comprehensive technical overview of existing studies on the application of RL in genomics, highlighting the strengths and limitations of these approaches. We then discuss potential research directions that are worthy of future exploration, including the development of more sophisticated reward functions as RL heavily depends on the accuracy of the reward function, the integration of RL with other machine learning techniques, and the application of RL to new and emerging areas in genomics research. Finally, we present our findings and conclude by summarizing the current state of the field and the future outlook for RL in genomics.