Goto

Collaborating Authors

 Alikhani, Malihe


Active Learning for Robust and Representative LLM Generation in Safety-Critical Scenarios

arXiv.org Artificial Intelligence

Ensuring robust safety measures across a wide range of scenarios is crucial for user-facing systems. While Large Language Models (LLMs) can generate valuable data for safety measures, they often exhibit distributional biases, focusing on common scenarios and neglecting rare but critical cases. This can undermine the effectiveness of safety protocols developed using such data. To address this, we propose a novel framework that integrates active learning with clustering to guide LLM generation, enhancing their representativeness and robustness in safety scenarios. We demonstrate the effectiveness of our approach by constructing a dataset of 5.4K potential safety violations through an iterative process involving LLM generation and an active learner model's feedback. Our results show that the proposed framework produces a more representative set of safety scenarios without requiring prior knowledge of the underlying data distribution. Additionally, data acquired through our method improves the accuracy and F1 score of both the active learner model as well models outside the scope of active learning process, highlighting its broad applicability.


Studying and Mitigating Biases in Sign Language Understanding Models

arXiv.org Artificial Intelligence

Ensuring that the benefits of sign language technologies are distributed equitably among all community members is crucial. Thus, it is important to address potential biases and inequities that may arise from the design or use of these resources. Crowd-sourced sign language datasets, such as the ASL Citizen dataset, are great resources for improving accessibility and preserving linguistic diversity, but they must be used thoughtfully to avoid reinforcing existing biases. In this work, we utilize the rich information about participant demographics and lexical features present in the ASL Citizen dataset to study and document the biases that may result from models trained on crowd-sourced sign datasets. Further, we apply several bias mitigation techniques during model training, and find that these techniques reduce performance disparities without decreasing accuracy. With the publication of this work, we release the demographic information about the participants in the ASL Citizen dataset to encourage future bias mitigation work in this space.


Evaluating Theory of (an uncertain) Mind: Predicting the Uncertain Beliefs of Others in Conversation Forecasting

arXiv.org Artificial Intelligence

Typically, when evaluating Theory of Mind, we consider the beliefs of others to be binary: held or not held. But what if someone is unsure about their own beliefs? How can we quantify this uncertainty? We propose a new suite of tasks, challenging language models (LMs) to model the uncertainty of others in dialogue. We design these tasks around conversation forecasting, wherein an agent forecasts an unobserved outcome to a conversation. Uniquely, we view interlocutors themselves as forecasters, asking an LM to predict the uncertainty of the interlocutors (a probability). We experiment with re-scaling methods, variance reduction strategies, and demographic context, for this regression task, conducting experiments on three dialogue corpora (social, negotiation, task-oriented) with eight LMs. While LMs can explain up to 7% variance in the uncertainty of others, we highlight the difficulty of the tasks and room for future work, especially in practical applications, like anticipating ``false


Dialogue with Robots: Proposals for Broadening Participation and Research in the SLIVAR Community

arXiv.org Artificial Intelligence

The ability to interact with machines using natural human language is becoming not just commonplace, but expected. The next step is not just text interfaces, but speech interfaces and not just with computers, but with all machines including robots. In this paper, we chronicle the recent history of this growing field of spoken dialogue with robots and offer the community three proposals, the first focused on education, the second on benchmarks, and the third on the modeling of language when it comes to spoken interaction with robots. The three proposals should act as white papers for any researcher to take and build upon.


Learning to Generate Context-Sensitive Backchannel Smiles for Embodied AI Agents with Applications in Mental Health Dialogues

arXiv.org Artificial Intelligence

Addressing the critical shortage of mental health resources for effective screening, diagnosis, and treatment remains a significant challenge. This scarcity underscores the need for innovative solutions, particularly in enhancing the accessibility and efficacy of therapeutic support. Embodied agents with advanced interactive capabilities emerge as a promising and cost-effective supplement to traditional caregiving methods. Crucial to these agents' effectiveness is their ability to simulate non-verbal behaviors, like backchannels, that are pivotal in establishing rapport and understanding in therapeutic contexts but remain under-explored. To improve the rapport-building capabilities of embodied agents we annotated backchannel smiles in videos of intimate face-to-face conversations over topics such as mental health, illness, and relationships. We hypothesized that both speaker and listener behaviors affect the duration and intensity of backchannel smiles. Using cues from speech prosody and language along with the demographics of the speaker and listener, we found them to contain significant predictors of the intensity of backchannel smiles. Based on our findings, we introduce backchannel smile production in embodied agents as a generation problem. Our attention-based generative model suggests that listener information offers performance improvements over the baseline speaker-centric generation approach. Conditioned generation using the significant predictors of smile intensity provides statistically significant improvements in empirical measures of generation quality. Our user study by transferring generated smiles to an embodied agent suggests that agent with backchannel smiles is perceived to be more human-like and is an attractive alternative for non-personal conversations over agent without backchannel smiles.


Deal, or no deal (or who knows)? Forecasting Uncertainty in Conversations using Large Language Models

arXiv.org Artificial Intelligence

Effective interlocutors account for the uncertain goals, beliefs, and emotions of others. But even the best human conversationalist cannot perfectly anticipate the trajectory of a dialogue. How well can language models represent inherent uncertainty in conversations? We propose FortUne Dial, an expansion of the long-standing "conversation forecasting" task: instead of just accuracy, evaluation is conducted with uncertainty-aware metrics, effectively enabling abstention on individual instances. We study two ways in which language models potentially represent outcome uncertainty (internally, using scores and directly, using tokens) and propose fine-tuning strategies to improve calibration of both representations. Experiments on eight difficult negotiation corpora demonstrate that our proposed fine-tuning strategies (a traditional supervision strategy and an off-policy reinforcement learning strategy) can calibrate smaller open-source models to compete with pre-trained models 10x their size.


DisCGen: A Framework for Discourse-Informed Counterspeech Generation

arXiv.org Artificial Intelligence

Counterspeech can be an effective method for battling hateful content on social media. Automated counterspeech generation can aid in this process. Generated counterspeech, however, can be viable only when grounded in the context of topic, audience and sensitivity as these factors influence both the efficacy and appropriateness. In this work, we propose a novel framework based on theories of discourse to study the inferential links that connect counter speeches to the hateful comment. Within this framework, we propose: i) a taxonomy of counterspeech derived from discourse frameworks, and ii) discourse-informed prompting strategies for generating contextually-grounded counterspeech. To construct and validate this framework, we present a process for collecting an in-the-wild dataset of counterspeech from Reddit. Using this process, we manually annotate a dataset of 3.9k Reddit comment pairs for the presence of hatespeech and counterspeech. The positive pairs are annotated for 10 classes in our proposed taxonomy. We annotate these pairs with paraphrased counterparts to remove offensiveness and first-person references. We show that by using our dataset and framework, large language models can generate contextually-grounded counterspeech informed by theories of discourse. According to our human evaluation, our approaches can act as a safeguard against critical failures of discourse-agnostic models.


SODA: Million-scale Dialogue Distillation with Social Commonsense Contextualization

arXiv.org Artificial Intelligence

Data scarcity has been a long standing issue in the field of open-domain social dialogue. To quench this thirst, we present SODA: the first publicly available, million-scale high-quality social dialogue dataset. By contextualizing social commonsense knowledge from a knowledge graph, we are able to distill an exceptionally broad spectrum of social interactions from a large language model. Human evaluation shows that conversations in SODA are more consistent, specific, and (surprisingly) natural than those in prior human-authored datasets. Using SODA, we train COSMO: a generalizable conversation model that is significantly more natural and consistent on unseen datasets than best-performing conversation models (e.g., GODEL, BlenderBot-1, Koala, Vicuna). Experiments reveal COSMO is sometimes even preferred to the original human-written gold responses. Additionally, our results shed light on the distinction between knowledge-enriched conversations and natural social chitchats. We plan to make our data, model, and code public.


Learning to Generate Equitable Text in Dialogue from Biased Training Data

arXiv.org Artificial Intelligence

The ingrained principles of fairness in a dialogue system's decision-making process and generated responses are crucial for user engagement, satisfaction, and task achievement. Absence of equitable and inclusive principles can hinder the formation of common ground, which in turn negatively impacts the overall performance of the system. For example, misusing pronouns in a user interaction may cause ambiguity about the intended subject. Yet, there is no comprehensive study of equitable text generation in dialogue. Aptly, in this work, we use theories of computational learning to study this problem. We provide formal definitions of equity in text generation, and further, prove formal connections between learning human-likeness and learning equity: algorithms for improving equity ultimately reduce to algorithms for improving human-likeness (on augmented data). With this insight, we also formulate reasonable conditions under which text generation algorithms can learn to generate equitable text without any modifications to the biased training data on which they learn. To exemplify our theory in practice, we look at a group of algorithms for the GuessWhat?! visual dialogue game and, using this example, test our theory empirically. Our theory accurately predicts relative-performance of multiple algorithms in generating equitable text as measured by both human and automated evaluation.


D-CALM: A Dynamic Clustering-based Active Learning Approach for Mitigating Bias

arXiv.org Artificial Intelligence

Despite recent advancements, NLP models continue to be vulnerable to bias. This bias often originates from the uneven distribution of real-world data and can propagate through the annotation process. Escalated integration of these models in our lives calls for methods to mitigate bias without overbearing annotation costs. While active learning (AL) has shown promise in training models with a small amount of annotated data, AL's reliance on the model's behavior for selective sampling can lead to an accumulation of unwanted bias rather than bias mitigation. However, infusing clustering with AL can overcome the bias issue of both AL and traditional annotation methods while exploiting AL's annotation efficiency. In this paper, we propose a novel adaptive clustering-based active learning algorithm, D-CALM, that dynamically adjusts clustering and annotation efforts in response to an estimated classifier error-rate. Experiments on eight datasets for a diverse set of text classification tasks, including emotion, hatespeech, dialog act, and book type detection, demonstrate that our proposed algorithm significantly outperforms baseline AL approaches with both pretrained transformers and traditional Support Vector Machines. D-CALM showcases robustness against different measures of information gain and, as evident from our analysis of label and error distribution, can significantly reduce unwanted model bias.