Well File:

 Alexandre Gramfort




Manifold-regression to predict from MEG/EEG brain signals without source modeling

Neural Information Processing Systems

Magnetoencephalography and electroencephalography (M/EEG) can reveal neuronal dynamics non-invasively in real-time and are therefore appreciated methods in medicine and neuroscience. Recent advances in modeling brain-behavior relationships have highlighted the effectiveness of Riemannian geometry for summarizing the spatially correlated time-series from M/EEG in terms of their covariance. However, after artefact-suppression, M/EEG data is often rank deficient which limits the application of Riemannian concepts. In this article, we focus on the task of regression with rank-reduced covariance matrices. We study two Riemannian approaches that vectorize the M/EEG covariance between-sensors through projection into a tangent space.


GAP Safe Screening Rules for Sparse-Group Lasso

Neural Information Processing Systems

For statistical learning in high dimension, sparse regularizations have proven useful to boost both computational and statistical efficiency. In some contexts, it is natural to handle more refined structures than pure sparsity, such as for instance group sparsity. Sparse-Group Lasso has recently been introduced in the context of linear regression to enforce sparsity both at the feature and at the group level. We propose the first (provably) safe screening rules for Sparse-Group Lasso, i.e., rules that allow to discard early in the solver features/groups that are inactive at optimal solution. Thanks to efficient dual gap computations relying on the geometric properties of ɛ-norm, safe screening rules for Sparse-Group Lasso lead to significant gains in term of computing time for our coordinate descent implementation.