Plotting

 Al-Hashimi, Israa


Deep Learning-Driven Segmentation of Ischemic Stroke Lesions Using Multi-Channel MRI

arXiv.org Artificial Intelligence

Ischemic stroke, caused by cerebral vessel occlusion, presents substantial challenges in medical imaging due to the variability and subtlety of stroke lesions. Magnetic Resonance Imaging (MRI) plays a crucial role in diagnosing and managing ischemic stroke, yet existing segmentation techniques often fail to accurately delineate lesions. This study introduces a novel deep learning-based method for segmenting ischemic stroke lesions using multi-channel MRI modalities, including Diffusion Weighted Imaging (DWI), Apparent Diffusion Coefficient (ADC), and enhanced Diffusion Weighted Imaging (eDWI). The proposed architecture integrates DenseNet121 as the encoder with Self-Organized Operational Neural Networks (SelfONN) in the decoder, enhanced by Channel and Space Compound Attention (CSCA) and Double Squeeze-and-Excitation (DSE) blocks. Additionally, a custom loss function combining Dice Loss and Jaccard Loss with weighted averages is introduced to improve model performance. Trained and evaluated on the ISLES 2022 dataset, the model achieved Dice Similarity Coefficients (DSC) of 83.88% using DWI alone, 85.86% with DWI and ADC, and 87.49% with the integration of DWI, ADC, and eDWI. This approach not only outperforms existing methods but also addresses key limitations in current segmentation practices. These advancements significantly enhance diagnostic precision and treatment planning for ischemic stroke, providing valuable support for clinical decision-making.


Machine-agnostic Automated Lumbar MRI Segmentation using a Cascaded Model Based on Generative Neurons

arXiv.org Artificial Intelligence

Automated lumbar spine segmentation is very crucial for modern diagnosis systems. In this study, we introduce a novel machine-agnostic approach for segmenting lumbar vertebrae and intervertebral discs from MRI images, employing a cascaded model that synergizes an ROI detection and a Self-organized Operational Neural Network (Self-ONN)-based encoder-decoder network for segmentation. Addressing the challenge of diverse MRI modalities, our methodology capitalizes on a unique dataset comprising images from 12 scanners and 34 subjects, enhanced through strategic preprocessing and data augmentation techniques. The YOLOv8 medium model excels in ROI extraction, achieving an excellent performance of 0.916 mAP score. Significantly, our Self-ONN-based model, combined with a DenseNet121 encoder, demonstrates excellent performance in lumbar vertebrae and IVD segmentation with a mean Intersection over Union (IoU) of 83.66%, a sensitivity of 91.44%, and Dice Similarity Coefficient (DSC) of 91.03%, as validated through rigorous 10-fold cross-validation. This study not only showcases an effective approach to MRI segmentation in spine-related disorders but also sets the stage for future advancements in automated diagnostic tools, emphasizing the need for further dataset expansion and model refinement for broader clinical applicability.


Deep learning in computed tomography pulmonary angiography imaging: a dual-pronged approach for pulmonary embolism detection

arXiv.org Artificial Intelligence

The increasing reliance on Computed Tomography Pulmonary Angiography (CTPA) for Pulmonary Embolism (PE) diagnosis presents challenges and a pressing need for improved diagnostic solutions. The primary objective of this study is to leverage deep learning techniques to enhance the Computer Assisted Diagnosis (CAD) of PE. With this aim, we propose a classifier-guided detection approach that effectively leverages the classifier's probabilistic inference to direct the detection predictions, marking a novel contribution in the domain of automated PE diagnosis. Our classification system includes an Attention-Guided Convolutional Neural Network (AG-CNN) that uses local context by employing an attention mechanism. This approach emulates a human expert's attention by looking at both global appearances and local lesion regions before making a decision. The classifier demonstrates robust performance on the FUMPE dataset, achieving an AUROC of 0.927, sensitivity of 0.862, specificity of 0.879, and an F1-score of 0.805 with the Inception-v3 backbone architecture. Moreover, AG-CNN outperforms the baseline DenseNet-121 model, achieving an 8.1% AUROC gain. While previous research has mostly focused on finding PE in the main arteries, our use of cutting-edge object detection models and ensembling techniques greatly improves the accuracy of detecting small embolisms in the peripheral arteries. Finally, our proposed classifier-guided detection approach further refines the detection metrics, contributing new state-of-the-art to the community: mAP$_{50}$, sensitivity, and F1-score of 0.846, 0.901, and 0.779, respectively, outperforming the former benchmark with a significant 3.7% improvement in mAP$_{50}$. Our research aims to elevate PE patient care by integrating AI solutions into clinical workflows, highlighting the potential of human-AI collaboration in medical diagnostics.