Goto

Collaborating Authors

 Ahmadian, Arash


Intriguing Properties of Quantization at Scale

arXiv.org Artificial Intelligence

Emergent properties have been widely adopted as a term to describe behavior not present in smaller models but observed in larger models. Recent work suggests that the trade-off incurred by quantization is also an emergent property, with sharp drops in performance in models over 6B parameters. In this work, we ask "are quantization cliffs in performance solely a factor of scale?" Against a backdrop of increased research focus on why certain emergent properties surface at scale, this work provides a useful counter-example. We posit that it is possible to optimize for a quantization friendly training recipe that suppresses large activation magnitude outliers. Here, we find that outlier dimensions are not an inherent product of scale, but rather sensitive to the optimization conditions present during pre-training. This both opens up directions for more efficient quantization, and poses the question of whether other emergent properties are inherent or can be altered and conditioned by optimization and architecture design choices. We successfully quantize models ranging in size from 410M to 52B with minimal degradation in performance.


Pseudo-Inverted Bottleneck Convolution for DARTS Search Space

arXiv.org Artificial Intelligence

Differentiable Architecture Search (DARTS) has attracted considerable attention as a gradient-based neural architecture search method. Since the introduction of DARTS, there has been little work done on adapting the action space based on state-of-art architecture design principles for CNNs. In this work, we aim to address this gap by incrementally augmenting the DARTS search space with micro-design changes inspired by ConvNeXt and studying the trade-off between accuracy, evaluation layer count, and computational cost. We introduce the Pseudo-Inverted Bottleneck Conv (PIBConv) block intending to reduce the computational footprint of the inverted bottleneck block proposed in ConvNeXt. Our proposed architecture is much less sensitive to evaluation layer count and outperforms a DARTS network with similar size significantly, at layer counts as small as 2. Furthermore, with less layers, not only does it achieve higher accuracy with lower computational footprint (measured in GMACs) and parameter count, GradCAM comparisons show that our network can better detect distinctive features of target objects compared to DARTS. Code is available from https://github.com/mahdihosseini/PIBConv.