Not enough data to create a plot.
Try a different view from the menu above.
Agarwal, Harsh
Novel Reinforcement Learning Algorithm for Suppressing Synchronization in Closed Loop Deep Brain Stimulators
Agarwal, Harsh, Rathore, Heena
Parkinson's disease is marked by altered and increased firing characteristics of pathological oscillations in the brain. In other words, it causes abnormal synchronous oscillations and suppression during neurological processing. In order to examine and regulate the synchronization and pathological oscillations in motor circuits, deep brain stimulators (DBS) are used. Although machine learning methods have been applied for the investigation of suppression, these models require large amounts of training data and computational power, both of which pose challenges to resource-constrained DBS. This research proposes a novel reinforcement learning (RL) framework for suppressing the synchronization in neuronal activity during episodes of neurological disorders with less power consumption. The proposed RL algorithm comprises an ensemble of a temporal representation of stimuli and a twin-delayed deep deterministic (TD3) policy gradient algorithm. We quantify the stability of the proposed framework to noise and reduced synchrony using RL for three pathological signaling regimes: regular, chaotic, and bursting, and further eliminate the undesirable oscillations. Furthermore, metrics such as evaluation rewards, energy supplied to the ensemble, and the mean point of convergence were used and compared to other RL algorithms, specifically the Advantage actor critic (A2C), the Actor critic with Kronecker-featured trust region (ACKTR), and the Proximal policy optimization (PPO).
A Seven-Layer Model for Standardising AI Fairness Assessment
Agarwal, Avinash, Agarwal, Harsh
Problem statement: Standardisation of AI fairness rules and benchmarks is challenging because AI fairness and other ethical requirements depend on multiple factors such as context, use case, type of the AI system, and so on. In this paper, we elaborate that the AI system is prone to biases at every stage of its lifecycle, from inception to its usage, and that all stages require due attention for mitigating AI bias. We need a standardised approach to handle AI fairness at every stage. Gap analysis: While AI fairness is a hot research topic, a holistic strategy for AI fairness is generally missing. Most researchers focus only on a few facets of AI model-building. Peer review shows excessive focus on biases in the datasets, fairness metrics, and algorithmic bias. In the process, other aspects affecting AI fairness get ignored. The solution proposed: We propose a comprehensive approach in the form of a novel seven-layer model, inspired by the Open System Interconnection (OSI) model, to standardise AI fairness handling. Despite the differences in the various aspects, most AI systems have similar model-building stages. The proposed model splits the AI system lifecycle into seven abstraction layers, each corresponding to a well-defined AI model-building or usage stage. We also provide checklists for each layer and deliberate on potential sources of bias in each layer and their mitigation methodologies. This work will facilitate layer-wise standardisation of AI fairness rules and benchmarking parameters.
Fairness Score and Process Standardization: Framework for Fairness Certification in Artificial Intelligence Systems
Agarwal, Avinash, Agarwal, Harsh, Agarwal, Nihaarika
Decisions made by various Artificial Intelligence (AI) systems greatly influence our day-to-day lives. With the increasing use of AI systems, it becomes crucial to know that they are fair, identify the underlying biases in their decision-making, and create a standardized framework to ascertain their fairness. In this paper, we propose a novel Fairness Score to measure the fairness of a data-driven AI system and a Standard Operating Procedure (SOP) for issuing Fairness Certification for such systems. Fairness Score and audit process standardization will ensure quality, reduce ambiguity, enable comparison and improve the trustworthiness of the AI systems. It will also provide a framework to operationalise the concept of fairness and facilitate the commercial deployment of such systems. Furthermore, a Fairness Certificate issued by a designated third-party auditing agency following the standardized process would boost the conviction of the organizations in the AI systems that they intend to deploy. The Bias Index proposed in this paper also reveals comparative bias amongst the various protected attributes within the dataset. To substantiate the proposed framework, we iteratively train a model on biased and unbiased data using multiple datasets and check that the Fairness Score and the proposed process correctly identify the biases and judge the fairness.
Shapes of Emotions: Multimodal Emotion Recognition in Conversations via Emotion Shifts
Agarwal, Harsh, Bansal, Keshav, Joshi, Abhinav, Modi, Ashutosh
Emotion Recognition in Conversations (ERC) is an important and active research problem. Recent work has shown the benefits of using multiple modalities (e.g., text, audio, and video) for the ERC task. In a conversation, participants tend to maintain a particular emotional state unless some external stimuli evokes a change. There is a continuous ebb and flow of emotions in a conversation. Inspired by this observation, we propose a multimodal ERC model and augment it with an emotion-shift component. The proposed emotion-shift component is modular and can be added to any existing multimodal ERC model (with a few modifications), to improve emotion recognition. We experiment with different variants of the model, and results show that the inclusion of emotion shift signal helps the model to outperform existing multimodal models for ERC and hence showing the state-of-the-art performance on MOSEI and IEMOCAP datasets.
DeepBLE: Generalizing RSSI-based Localization Across Different Devices
Agarwal, Harsh, Sanghvi, Navyata, Roy, Vivek, Kitani, Kris
Accurate smartphone localization (< 1-meter error) for indoor navigation using only RSSI received from a set of BLE beacons remains a challenging problem, due to the inherent noise of RSSI measurements. To overcome the large variance in RSSI measurements, we propose a data-driven approach that uses a deep recurrent network, DeepBLE, to localize the smartphone using RSSI measured from multiple beacons in an environment. In particular, we focus on the ability of our approach to generalize across many smartphone brands (e.g., Apple, Samsung) and models (e.g., iPhone 8, S10). Towards this end, we collect a large-scale dataset of 15 hours of smartphone data, which consists of over 50,000 BLE beacon RSSI measurements collected from 47 beacons in a single building using 15 different popular smartphone models, along with precise 2D location annotations. Our experiments show that there is a very high variability of RSSI measurements across smartphone models (especially across brand), making it very difficult to apply supervised learning using only a subset of smartphone models. To address this challenge, we propose a novel statistic similarity loss (SSL) which enables our model to generalize to unseen phones using a semi-supervised learning approach. For known phones, the iPhone XR achieves the best mean distance error of 0.84 meters. For unknown phones, the Huawei Mate20 Pro shows the greatest improvement, cutting error by over 38\% from 2.62 meters to 1.63 meters error using our semi-supervised adaptation method.