Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Aditya Grover
Streamlining Variational Inference for Constraint Satisfaction Problems
Aditya Grover, Tudor Achim, Stefano Ermon
Several algorithms for solving constraint satisfaction problems are based on survey propagation, a variational inference scheme used to obtain approximate marginal probability estimates for variable assignments. These marginals correspond to how frequently each variable is set to true among satisfying assignments, and are used to inform branching decisions during search; however, marginal estimates obtained via survey propagation are approximate and can be self-contradictory. We introduce a more general branching strategy based on streamlining constraints, which sidestep hard assignments to variables. We show that streamlined solvers consistently outperform decimation-based solvers on random k-SAT instances for several problem sizes, shrinking the gap between empirical performance and theoretical limits of satisfiability by 16.3% on average for k =3, 4, 5, 6.
Streamlining Variational Inference for Constraint Satisfaction Problems
Aditya Grover, Tudor Achim, Stefano Ermon
Several algorithms for solving constraint satisfaction problems are based on survey propagation, a variational inference scheme used to obtain approximate marginal probability estimates for variable assignments. These marginals correspond to how frequently each variable is set to true among satisfying assignments, and are used to inform branching decisions during search; however, marginal estimates obtained via survey propagation are approximate and can be self-contradictory. We introduce a more general branching strategy based on streamlining constraints, which sidestep hard assignments to variables. We show that streamlined solvers consistently outperform decimation-based solvers on random k-SAT instances for several problem sizes, shrinking the gap between empirical performance and theoretical limits of satisfiability by 16.3% on average for k =3, 4, 5, 6.
Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting
Aditya Grover, Jiaming Song, Ashish Kapoor, Kenneth Tran, Alekh Agarwal, Eric J. Horvitz, Stefano Ermon
A learned generative model often produces biased statistics relative to the underlying data distribution. A standard technique to correct this bias is importance sampling, where samples from the model are weighted by the likelihood ratio under model and true distributions. When the likelihood ratio is unknown, it can be estimated by training a probabilistic classifier to distinguish samples from the two distributions. We show that this likelihood-free importance weighting method induces a new energy-based model and employ it to correct for the bias in existing models. We find that this technique consistently improves standard goodness-of-fit metrics for evaluating the sample quality of state-of-the-art deep generative models, suggesting reduced bias. Finally, we demonstrate its utility on representative applications in a) data augmentation for classification using generative adversarial networks, and b) model-based policy evaluation using off-policy data.
Variational Bayes on Monte Carlo Steroids
Aditya Grover, Stefano Ermon
Variational approaches are often used to approximate intractable posteriors or normalization constants in hierarchical latent variable models. While often effective in practice, it is known that the approximation error can be arbitrarily large. We propose a new class of bounds on the marginal log-likelihood of directed latent variable models. Our approach relies on random projections to simplify the posterior. In contrast to standard variational methods, our bounds are guaranteed to be tight with high probability. We provide a new approach for learning latent variable models based on optimizing our new bounds on the log-likelihood. We demonstrate empirical improvements on benchmark datasets in vision and language for sigmoid belief networks, where a neural network is used to approximate the posterior.