Plotting

 Adelani, David Ifeoluwa


AfriMTE and AfriCOMET: Empowering COMET to Embrace Under-resourced African Languages

arXiv.org Artificial Intelligence

Despite the progress we have recorded in scaling multilingual machine translation (MT) models and evaluation data to several under-resourced African languages, it is difficult to measure accurately the progress we have made on these languages because evaluation is often performed on n-gram matching metrics like BLEU that often have worse correlation with human judgments. Embedding-based metrics such as COMET correlate better; however, lack of evaluation data with human ratings for under-resourced languages, complexity of annotation guidelines like Multidimensional Quality Metrics (MQM), and limited language coverage of multilingual encoders have hampered their applicability to African languages. In this paper, we address these challenges by creating high-quality human evaluation data with a simplified MQM guideline for error-span annotation and direct assessment (DA) scoring for 13 typologically diverse African languages. Furthermore, we develop AfriCOMET, a COMET evaluation metric for African languages by leveraging DA training data from high-resource languages and African-centric multilingual encoder (AfroXLM-Roberta) to create the state-of-the-art evaluation metric for African languages MT with respect to Spearman-rank correlation with human judgments (+0.406).


AfriSenti: A Twitter Sentiment Analysis Benchmark for African Languages

arXiv.org Artificial Intelligence

Africa is home to over 2,000 languages from more than six language families and has the highest linguistic diversity among all continents. These include 75 languages with at least one million speakers each. Yet, there is little NLP research conducted on African languages. Crucial to enabling such research is the availability of high-quality annotated datasets. In this paper, we introduce AfriSenti, a sentiment analysis benchmark that contains a total of >110,000 tweets in 14 African languages (Amharic, Algerian Arabic, Hausa, Igbo, Kinyarwanda, Moroccan Arabic, Mozambican Portuguese, Nigerian Pidgin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and Yor\`ub\'a) from four language families. The tweets were annotated by native speakers and used in the AfriSenti-SemEval shared task (The AfriSenti Shared Task had over 200 participants. See website at https://afrisenti-semeval.github.io). We describe the data collection methodology, annotation process, and the challenges we dealt with when curating each dataset. We further report baseline experiments conducted on the different datasets and discuss their usefulness.


MasakhaNEWS: News Topic Classification for African languages

arXiv.org Artificial Intelligence

African languages are severely under-represented in NLP research due to lack of datasets covering several NLP tasks. While there are individual language specific datasets that are being expanded to different tasks, only a handful of NLP tasks (e.g. named entity recognition and machine translation) have standardized benchmark datasets covering several geographical and typologically-diverse African languages. In this paper, we develop MasakhaNEWS -- a new benchmark dataset for news topic classification covering 16 languages widely spoken in Africa. We provide an evaluation of baseline models by training classical machine learning models and fine-tuning several language models. Furthermore, we explore several alternatives to full fine-tuning of language models that are better suited for zero-shot and few-shot learning such as cross-lingual parameter-efficient fine-tuning (like MAD-X), pattern exploiting training (PET), prompting language models (like ChatGPT), and prompt-free sentence transformer fine-tuning (SetFit and Cohere Embedding API). Our evaluation in zero-shot setting shows the potential of prompting ChatGPT for news topic classification in low-resource African languages, achieving an average performance of 70 F1 points without leveraging additional supervision like MAD-X. In few-shot setting, we show that with as little as 10 examples per label, we achieved more than 90\% (i.e. 86.0 F1 points) of the performance of full supervised training (92.6 F1 points) leveraging the PET approach.


YORC: Yoruba Reading Comprehension dataset

arXiv.org Artificial Intelligence

In this paper, we create YORC: a new multi-choice Yoruba Reading Comprehension dataset that is based on Yoruba high-school reading comprehension examination. We provide baseline results by performing cross-lingual transfer using existing English RACE dataset based on a pre-trained encoder-only model. Additionally, we provide results by prompting large language models (LLMs) like GPT-4.


NollySenti: Leveraging Transfer Learning and Machine Translation for Nigerian Movie Sentiment Classification

arXiv.org Artificial Intelligence

Africa has over 2000 indigenous languages but they are under-represented in NLP research due to lack of datasets. In recent years, there have been progress in developing labeled corpora for African languages. However, they are often available in a single domain and may not generalize to other domains. In this paper, we focus on the task of sentiment classification for cross domain adaptation. We create a new dataset, NollySenti - based on the Nollywood movie reviews for five languages widely spoken in Nigeria (English, Hausa, Igbo, Nigerian-Pidgin, and Yoruba. We provide an extensive empirical evaluation using classical machine learning methods and pre-trained language models. Leveraging transfer learning, we compare the performance of cross-domain adaptation from Twitter domain, and cross-lingual adaptation from English language. Our evaluation shows that transfer from English in the same target domain leads to more than 5% improvement in accuracy compared to transfer from Twitter in the same language. To further mitigate the domain difference, we leverage machine translation (MT) from English to other Nigerian languages, which leads to a further improvement of 7% over cross-lingual evaluation. While MT to low-resource languages are often of low quality, through human evaluation, we show that most of the translated sentences preserve the sentiment of the original English reviews.


\`{I}r\`{o}y\`{i}nSpeech: A multi-purpose Yor\`{u}b\'{a} Speech Corpus

arXiv.org Artificial Intelligence

We introduce the \`{I}r\`{o}y\`{i}nSpeech corpus -- a new dataset influenced by a desire to increase the amount of high quality, freely available, contemporary Yor\`{u}b\'{a} speech. We release a multi-purpose dataset that can be used for both TTS and ASR tasks. We curated text sentences from the news and creative writing domains under an open license i.e., CC-BY-4.0 and had multiple speakers record each sentence. We provide 5000 of our utterances to the Common Voice platform to crowdsource transcriptions online. The dataset has 38.5 hours of data in total, recorded by 80 volunteers.


Improving Language Plasticity via Pretraining with Active Forgetting

arXiv.org Artificial Intelligence

Pretrained language models (PLMs) are today the primary model for natural language processing. Despite their impressive downstream performance, it can be difficult to apply PLMs to new languages, a barrier to making their capabilities universally accessible. While prior work has shown it possible to address this issue by learning a new embedding layer for the new language, doing so is both data and compute inefficient. We propose to use an active forgetting mechanism during pretraining, as a simple way of creating PLMs that can quickly adapt to new languages. Concretely, by resetting the embedding layer every K updates during pretraining, we encourage the PLM to improve its ability of learning new embeddings within a limited number of updates, similar to a meta-learning effect. Experiments with RoBERTa show that models pretrained with our forgetting mechanism not only demonstrate faster convergence during language adaptation but also outperform standard ones in a low-data regime, particularly for languages that are distant from English.


BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

arXiv.org Artificial Intelligence

Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.


BLOOM+1: Adding Language Support to BLOOM for Zero-Shot Prompting

arXiv.org Artificial Intelligence

The BLOOM model is a large publicly available multilingual language model, but its pretraining was limited to 46 languages. To extend the benefits of BLOOM to other languages without incurring prohibitively large costs, it is desirable to adapt BLOOM to new languages not seen during pretraining. In this work, we apply existing language adaptation strategies to BLOOM and benchmark its zero-shot prompting performance on eight new languages in a resource-constrained setting. We find language adaptation to be effective at improving zero-shot performance in new languages. Surprisingly, we find that adapter-based finetuning is more effective than continued pretraining for large models. In addition, we discover that prompting performance is not significantly affected by language specifics, such as the writing system. It is primarily determined by the size of the language adaptation data. We also add new languages to BLOOMZ, which is a multitask finetuned version of BLOOM capable of following task instructions zero-shot. We find including a new language in the multitask fine-tuning mixture to be the most effective method to teach BLOOMZ a new language. We conclude that with sufficient training data language adaptation can generalize well to diverse languages. Our code is available at https://github.com/bigscience-workshop/multilingual-modeling.


AfriQA: Cross-lingual Open-Retrieval Question Answering for African Languages

arXiv.org Artificial Intelligence

African languages have far less in-language content available digitally, making it challenging for question answering systems to satisfy the information needs of users. Cross-lingual open-retrieval question answering (XOR QA) systems -- those that retrieve answer content from other languages while serving people in their native language -- offer a means of filling this gap. To this end, we create AfriQA, the first cross-lingual QA dataset with a focus on African languages. AfriQA includes 12,000+ XOR QA examples across 10 African languages. While previous datasets have focused primarily on languages where cross-lingual QA augments coverage from the target language, AfriQA focuses on languages where cross-lingual answer content is the only high-coverage source of answer content. Because of this, we argue that African languages are one of the most important and realistic use cases for XOR QA. Our experiments demonstrate the poor performance of automatic translation and multilingual retrieval methods. Overall, AfriQA proves challenging for state-of-the-art QA models. We hope that the dataset enables the development of more equitable QA technology.