Plotting

 Abraham, Ajith


Transformative Effects of ChatGPT on Modern Education: Emerging Era of AI Chatbots

arXiv.org Artificial Intelligence

ChatGPT, an AI-based chatbot, was released to provide coherent and useful replies based on analysis of large volumes of data. In this article, leading scientists, researchers and engineers discuss the transformative effects of ChatGPT on modern education. This research seeks to improve our knowledge of ChatGPT capabilities and its use in the education sector, identifying potential concerns and challenges. Our preliminary evaluation concludes that ChatGPT performed differently in each subject area including finance, coding and maths. While ChatGPT has the ability to help educators by creating instructional content, offering suggestions and acting as an online educator to learners by answering questions and promoting group work, there are clear drawbacks in its use, such as the possibility of producing inaccurate or false data and circumventing duplicate content (plagiarism) detectors where originality is essential. The often reported hallucinations within Generative AI in general, and also relevant for ChatGPT, can render its use of limited benefit where accuracy is essential. What ChatGPT lacks is a stochastic measure to help provide sincere and sensitive communication with its users. Academic regulations and evaluation practices used in educational institutions need to be updated, should ChatGPT be used as a tool in education. To address the transformative effects of ChatGPT on the learning environment, educating teachers and students alike about its capabilities and limitations will be crucial.


Fuzzy Mutation Embedded Hybrids of Gravitational Search and Particle Swarm Optimization Methods for Engineering Design Problems

arXiv.org Artificial Intelligence

Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO) are nature-inspired, swarm-based optimization algorithms respectively. Though they have been widely used for single-objective optimization since their inception, they suffer from premature convergence. Even though the hybrids of GSA and PSO perform much better, the problem remains. Hence, to solve this issue we have proposed a fuzzy mutation model for two hybrid versions of PSO and GSA - Gravitational Particle Swarm (GPS) and PSOGSA. The developed algorithms are called Mutation based GPS (MGPS) and Mutation based PSOGSA (MPSOGSA). The mutation operator is based on a fuzzy model where the probability of mutation has been calculated based on the closeness of particle to population centroid and improvement in the particle value. We have evaluated these two new algorithms on 23 benchmark functions of three categories (unimodal, multi-modal and multi-modal with fixed dimension). The experimental outcome shows that our proposed model outperforms their corresponding ancestors, MGPS outperforms GPS 13 out of 23 times (56.52%) and MPSOGSA outperforms PSOGSA 17 times out of 23 (73.91 %). We have also compared our results against those of recent optimization algorithms such as Sine Cosine Algorithm (SCA), Opposition-Based SCA, and Volleyball Premier League Algorithm (VPL). In addition, we have applied our proposed algorithms on some classic engineering design problems and the outcomes are satisfactory. The related codes of the proposed algorithms can be found in this link: Fuzzy-Mutation-Embedded-Hybrids-of-GSA-and-PSO.


Heuristic design of fuzzy inference systems: A review of three decades of research

arXiv.org Artificial Intelligence

This paper provides an in-depth review of the optimal design of type-1 and type-2 fuzzy inference systems (FIS) using five well known computational frameworks: genetic-fuzzy systems (GFS), neuro-fuzzy systems (NFS), hierarchical fuzzy systems (HFS), evolving fuzzy systems (EFS), and multi-objective fuzzy systems (MFS), which is in view that some of them are linked to each other. The heuristic design of GFS uses evolutionary algorithms for optimizing both Mamdani-type and Takagi-Sugeno-Kang-type fuzzy systems. Whereas, the NFS combines the FIS with neural network learning systems to improve the approximation ability. An HFS combines two or more low-dimensional fuzzy logic units in a hierarchical design to overcome the curse of dimensionality. An EFS solves the data streaming issues by evolving the system incrementally, and an MFS solves the multi-objective trade-offs like the simultaneous maximization of both interpretability and accuracy. This paper offers a synthesis of these dimensions and explores their potentials, challenges, and opportunities in FIS research. This review also examines the complex relations among these dimensions and the possibilities of combining one or more computational frameworks adding another dimension: deep fuzzy systems.