Abdul-Mageed, Muhammad
Small Character Models Match Large Word Models for Autocomplete Under Memory Constraints
Jawahar, Ganesh, Mukherjee, Subhabrata, Dey, Debadeepta, Abdul-Mageed, Muhammad, Lakshmanan, Laks V. S., Mendes, Caio Cesar Teodoro, de Rosa, Gustavo Henrique, Shah, Shital
Autocomplete is a task where the user inputs a piece of text, termed prompt, which is conditioned by the model to generate semantically coherent continuation. Existing works for this task have primarily focused on datasets (e.g., email, chat) with high frequency user prompt patterns (or focused prompts) where word-based language models have been quite effective. In this work, we study the more challenging open-domain setting consisting of low frequency user prompt patterns (or broad prompts, e.g., prompt about 93rd academy awards) and demonstrate the effectiveness of character-based language models. We study this problem under memory-constrained settings (e.g., edge devices and smartphones), where character-based representation is effective in reducing the overall model size (in terms of parameters). We use WikiText-103 benchmark to simulate broad prompts and demonstrate that character models rival word models in exact match accuracy for the autocomplete task, when controlled for the model size. For instance, we show that a 20M parameter character model performs similar to an 80M parameter word model in the vanilla setting. We further propose novel methods to improve character models by incorporating inductive bias in the form of compositional information and representation transfer from large word models. Datasets and code used in this work are available at https://github.com/UBC-NLP/char_autocomplete.
AutoMoE: Heterogeneous Mixture-of-Experts with Adaptive Computation for Efficient Neural Machine Translation
Jawahar, Ganesh, Mukherjee, Subhabrata, Liu, Xiaodong, Kim, Young Jin, Abdul-Mageed, Muhammad, Lakshmanan, Laks V. S., Awadallah, Ahmed Hassan, Bubeck, Sebastien, Gao, Jianfeng
Mixture-of-Expert (MoE) models have obtained state-of-the-art performance in Neural Machine Translation (NMT) tasks. Existing works in MoE mostly consider a homogeneous design where the same number of experts of the same size are placed uniformly throughout the network. Furthermore, existing MoE works do not consider computational constraints (e.g., FLOPs, latency) to guide their design. To this end, we develop AutoMoE -- a framework for designing heterogeneous MoE's under computational constraints. AutoMoE leverages Neural Architecture Search (NAS) to obtain efficient sparse MoE sub-transformers with 4x inference speedup (CPU) and FLOPs reduction over manually designed Transformers, with parity in BLEU score over dense Transformer and within 1 BLEU point of MoE SwitchTransformer, on aggregate over benchmark datasets for NMT. Heterogeneous search space with dense and sparsely activated Transformer modules (e.g., how many experts? where to place them? what should be their sizes?) allows for adaptive compute -- where different amounts of computations are used for different tokens in the input. Adaptivity comes naturally from routing decisions which send tokens to experts of different sizes. AutoMoE code, data, and trained models are available at https://aka.ms/AutoMoE.
N-Shot Benchmarking of Whisper on Diverse Arabic Speech Recognition
Talafha, Bashar, Waheed, Abdul, Abdul-Mageed, Muhammad
Whisper, the recently developed multilingual weakly supervised model, is reported to perform well on multiple speech recognition benchmarks in both monolingual and multilingual settings. However, it is not clear how Whisper would fare under diverse conditions even on languages it was evaluated on such as Arabic. In this work, we address this gap by comprehensively evaluating Whisper on several varieties of Arabic speech for the ASR task. Our evaluation covers most publicly available Arabic speech data and is performed under n-shot (zero-, few-, and full) finetuning. We also investigate the robustness of Whisper under completely novel conditions, such as in dialect-accented standard Arabic and in unseen dialects for which we develop evaluation data. Our experiments show that although Whisper zero-shot outperforms fully finetuned XLS-R models on all datasets, its performance deteriorates significantly in the zero-shot setting for five unseen dialects (i.e., Algeria, Jordan, Palestine, UAE, and Yemen).
On the Robustness of Arabic Speech Dialect Identification
Sullivan, Peter, Elmadany, AbdelRahim, Abdul-Mageed, Muhammad
Arabic dialect identification (ADI) tools are an important part of the large-scale data collection pipelines necessary for training speech recognition models. As these pipelines require application of ADI tools to potentially out-of-domain data, we aim to investigate how vulnerable the tools may be to this domain shift. With self-supervised learning (SSL) models as a starting point, we evaluate transfer learning and direct classification from SSL features. We undertake our evaluation under rich conditions, with a goal to develop ADI systems from pretrained models and ultimately evaluate performance on newly collected data. In order to understand what factors contribute to model decisions, we carry out a careful human study of a subset of our data. Our analysis confirms that domain shift is a major challenge for ADI lected data to probe the limits of our transfer learning methods models. We also find that while self-training does alleviate this in a realistic data pipeline.
ORCA: A Challenging Benchmark for Arabic Language Understanding
Elmadany, AbdelRahim, Nagoudi, El Moatez Billah, Abdul-Mageed, Muhammad
Due to their crucial role in all NLP, several benchmarks have been proposed to evaluate pretrained language models. In spite of these efforts, no public benchmark of diverse nature currently exists for evaluation of Arabic. This makes it challenging to measure progress for both Arabic and multilingual language models. This challenge is compounded by the fact that any benchmark targeting Arabic needs to take into account the fact that Arabic is not a single language but rather a collection of languages and varieties. In this work, we introduce ORCA, a publicly available benchmark for Arabic language understanding evaluation. ORCA is carefully constructed to cover diverse Arabic varieties and a wide range of challenging Arabic understanding tasks exploiting 60 different datasets across seven NLU task clusters. To measure current progress in Arabic NLU, we use ORCA to offer a comprehensive comparison between 18 multilingual and Arabic language models. We also provide a public leaderboard with a unified single-number evaluation metric (ORCA score) to facilitate future research.
SERENGETI: Massively Multilingual Language Models for Africa
Adebara, Ife, Elmadany, AbdelRahim, Abdul-Mageed, Muhammad, Inciarte, Alcides Alcoba
Multilingual pretrained language models (mPLMs) acquire valuable, generalizable linguistic information during pretraining and have advanced the state of the art on task-specific finetuning. To date, only ~31 out of ~2,000 African languages are covered in existing language models. We ameliorate this limitation by developing SERENGETI, a massively multilingual language model that covers 517 African languages and language varieties. We evaluate our novel models on eight natural language understanding tasks across 20 datasets, comparing to 4 mPLMs that cover 4-23 African languages. SERENGETI outperforms other models on 11 datasets across the eights tasks, achieving 82.27 average F_1. We also perform analyses of errors from our models, which allows us to investigate the influence of language genealogy and linguistic similarity when the models are applied under zero-shot settings. We will publicly release our models for research.\footnote{\href{https://github.com/UBC-NLP/serengeti}{https://github.com/UBC-NLP/serengeti}}
LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions
Wu, Minghao, Waheed, Abdul, Zhang, Chiyu, Abdul-Mageed, Muhammad, Aji, Alham Fikri
Large language models (LLMs) with instruction fine-tuning demonstrate superior generative capabilities. However, these models are resource-intensive. To alleviate this issue, we explore distilling knowledge from instruction-tuned LLMs into much smaller ones. To this end, we carefully develop a large set of 2.58M instructions based on both existing and newly-generated instructions. In addition to being sizable, we design our instructions to cover a broad set of topics to ensure diversity. Extensive analysis of our instruction dataset confirms its diversity, and we generate responses for these instructions using gpt-3.5-turbo. Leveraging these instructions, we fine-tune a diverse herd of models, collectively referred to as LaMini-LM, which includes models from both the encoder-decoder and decoder-only families, with varying sizes. We evaluate the performance of our models using automatic metrics on 15 different natural language processing (NLP) benchmarks, as well as through human assessment. The results demonstrate that our proposed LaMini-LM models are comparable to competitive baselines, while being nearly 10 times smaller in size.
Contrastive Learning of Sociopragmatic Meaning in Social Media
Zhang, Chiyu, Abdul-Mageed, Muhammad, Jawahar, Ganesh
Recent progress in representation and contrastive learning in NLP has not widely considered the class of \textit{sociopragmatic meaning} (i.e., meaning in interaction within different language communities). To bridge this gap, we propose a novel framework for learning task-agnostic representations transferable to a wide range of sociopragmatic tasks (e.g., emotion, hate speech, humor, sarcasm). Our framework outperforms other contrastive learning frameworks for both in-domain and out-of-domain data, across both the general and few-shot settings. For example, compared to two popular pre-trained language models, our method obtains an improvement of $11.66$ average $F_1$ on $16$ datasets when fine-tuned on only $20$ training samples per dataset.Our code is available at: https://github.com/UBC-NLP/infodcl
Zero-Shot Slot and Intent Detection in Low-Resource Languages
Kwon, Sang Yun, Bhatia, Gagan, Nagoudi, El Moatez Billah, Inciarte, Alcides Alcoba, Abdul-Mageed, Muhammad
Intent detection and slot filling are critical tasks in spoken and natural language understanding for task-oriented dialog systems. In this work we describe our participation in the slot and intent detection for low-resource language varieties (SID4LR; Aepli et al. (2023)). We investigate the slot and intent detection (SID) tasks using a wide range of models and settings. Given the recent success of multitask-prompted finetuning of large language models, we also test the generalization capability of the recent encoder-decoder model mT0 (Muennighoff et al., 2022) on new tasks (i.e., SID) in languages they have never intentionally seen. We show that our best model outperforms the baseline by a large margin (up to +30 F1 points) in both SID tasks
UBC-DLNLP at SemEval-2023 Task 12: Impact of Transfer Learning on African Sentiment Analysis
Bhatia, Gagan, Adebara, Ife, Elmadany, AbdelRahim, Abdul-Mageed, Muhammad
We describe our contribution to the SemEVAl 2023 AfriSenti-SemEval shared task, where we tackle the task of sentiment analysis in 14 different African languages. We develop both monolingual and multilingual models under a full supervised setting (subtasks A and B). We also develop models for the zero-shot setting (subtask C). Our approach involves experimenting with transfer learning using six language models, including further pertaining of some of these models as well as a final finetuning stage. Our best performing models achieve an F1-score of 70.36 on development data and an F1-score of 66.13 on test data. Unsurprisingly, our results demonstrate the effectiveness of transfer learning and fine-tuning techniques for sentiment analysis across multiple languages. Our approach can be applied to other sentiment analysis tasks in different languages and domains.