Goto

Collaborating Authors

 Abdolmaleki, Abbas


Robust Reinforcement Learning for Continuous Control with Model Misspecification

arXiv.org Artificial Intelligence

We provide a framework for incorporating robustness -- to perturbations in the transition dynamics which we refer to as model misspecification -- into continuous control Reinforcement Learning (RL) algorithms. We specifically focus on incorporating robustness into a state-of-the-art continuous control RL algorithm called Maximum a-posteriori Policy Optimization (MPO). We achieve this by learning a policy that optimizes for a worst case, entropy-regularized, expected return objective and derive a corresponding robust entropy-regularized Bellman contraction operator. In addition, we introduce a less conservative, soft-robust, entropy-regularized objective with a corresponding Bellman operator. We show that both, robust and soft-robust policies, outperform their non-robust counterparts in nine Mujoco domains with environment perturbations. Finally, we present multiple investigative experiments that provide a deeper insight into the robustness framework; including an adaptation to another continuous control RL algorithm as well as comparing this approach to domain randomization. Performance videos can be found online at https://sites.google.com/view/robust-rl.


Simultaneously Learning Vision and Feature-based Control Policies for Real-world Ball-in-a-Cup

arXiv.org Machine Learning

We present a method for fast training of vision based control policies on real robots. The key idea behind our method is to perform multi-task Reinforcement Learning with auxiliary tasks that differ not only in the reward to be optimized but also in the state-space in which they operate. In particular, we allow auxiliary task policies to utilize task features that are available only at training-time. This allows for fast learning of auxiliary policies, which subsequently generate good data for training the main, vision-based control policies. This method can be seen as an extension of the Scheduled Auxiliary Control (SAC-X) framework. We demonstrate the efficacy of our method by using both a simulated and real-world Ball-in-a-Cup game controlled by a robot arm. In simulation, our approach leads to significant learning speed-ups when compared to standard SAC-X. On the real robot we show that the task can be learned from-scratch, i.e., with no transfer from simulation and no imitation learning. Videos of our learned policies running on the real robot can be found at https://sites.google.com/view/rss-2019-sawyer-bic/.


Relative Entropy Regularized Policy Iteration

arXiv.org Machine Learning

We present an off-policy actor-critic algorithm for Reinforcement Learning (RL) that combines ideas from gradient-free optimization via stochastic search with learned action-value function. The result is a simple procedure consisting of three steps: i) policy evaluation by estimating a parametric action-value function; ii) policy improvement via the estimation of a local non-parametric policy; and iii) generalization by fitting a parametric policy. Each step can be implemented in different ways, giving rise to several algorithm variants. Our algorithm draws on connections to existing literature on black-box optimization and 'RL as an inference' and it can be seen either as an extension of the Maximum a Posteriori Policy Optimisation algorithm (MPO) [Abdolmaleki et al., 2018a], or as an extension of Trust Region Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [Abdolmaleki et al., 2017b; Hansen et al., 1997] to a policy iteration scheme. Our comparison on 31 continuous control tasks from parkour suite [Heess et al., 2017], DeepMind control suite [Tassa et al., 2018] and OpenAI Gym [Brockman et al., 2016] with diverse properties, limited amount of compute and a single set of hyperparameters, demonstrate the effectiveness of our method and the state of art results. Videos, summarizing results, can be found at goo.gl/HtvJKR .


Maximum a Posteriori Policy Optimisation

arXiv.org Artificial Intelligence

We introduce a new algorithm for reinforcement learning called Maximum aposteriori Policy Optimisation (MPO) based on coordinate ascent on a relative entropy objective. We show that several existing methods can directly be related to our derivation. We develop two off-policy algorithms and demonstrate that they are competitive with the state-of-the-art in deep reinforcement learning. In particular, for continuous control, our method outperforms existing methods with respect to sample efficiency, premature convergence and robustness to hyperparameter settings while achieving similar or better final performance.


Guide Actor-Critic for Continuous Control

arXiv.org Machine Learning

Actor-critic methods solve reinforcement learning problems by updating a parameterized policy known as an actor in a direction that increases an estimate of the expected return known as a critic. However, existing actor-critic methods only use values or gradients of the critic to update the policy parameter. In this paper, we propose a novel actor-critic method called the guide actor-critic (GAC). GAC firstly learns a guide actor that locally maximizes the critic and then it updates the policy parameter based on the guide actor by supervised learning. Our main theoretical contributions are two folds. First, we show that GAC updates the guide actor by performing second-order optimization in the action space where the curvature matrix is based on the Hessians of the critic. Second, we show that the deterministic policy gradient method is a special case of GAC when the Hessians are ignored. Through experiments, we show that our method is a promising reinforcement learning method for continuous controls.


Stochastic Search In Changing Situations

AAAI Conferences

Stochastic search algorithms are black-box optimizer of an objective function. They have recently gained a lot of attention in operations research, machine learning and policy search of robot motor skills due to their ease of use and their generality. However, when the task or objective function slightly changes, many stochastic search algorithms require complete re-learning in order to adapt thesolution to the new objective function or the new context. As such, we consider the contextual stochastic search paradigm. Here, we want to find good parameter vectors for multiple related tasks, where each task is described by a continuous context vector. Hence, the objective function might change slightly for each parameter vector evaluation. In this paper, we investigate a contextual stochastic search algorithm known as Contextual Relative Entropy Policy Search (CREPS), an information-theoretic algorithm that can learn from multiple tasks simultaneously. We show the application of CREPS for simulated robotic tasks.


Model-Based Relative Entropy Stochastic Search

Neural Information Processing Systems

Stochastic search algorithms are general black-box optimizers. Due to their ease of use and their generality, they have recently also gained a lot of attention in operations research, machine learning and policy search. Yet, these algorithms require a lot of evaluations of the objective, scale poorly with the problem dimension, are affected by highly noisy objective functions and may converge prematurely. To alleviate these problems, we introduce a new surrogate-based stochastic search approach. We learn simple, quadratic surrogate models of the objective function. As the quality of such a quadratic approximation is limited, we do not greedily exploit the learned models. The algorithm can be misled by an inaccurate optimum introduced by the surrogate. Instead, we use information theoretic constraints to bound the `distance' between the new and old data distribution while maximizing the objective function. Additionally the new method is able to sustain the exploration of the search distribution to avoid premature convergence. We compare our method with state of art black-box optimization methods on standard uni-modal and multi-modal optimization functions, on simulated planar robot tasks and a complex robot ball throwing task.The proposed method considerably outperforms the existing approaches.