Şimşekli, Umut
Self-Supervised VQ-VAE For One-Shot Music Style Transfer
Cífka, Ondřej, Ozerov, Alexey, Şimşekli, Umut, Richard, Gaël
Neural style transfer, allowing to apply the artistic style of one image to another, has become one of the most widely showcased computer vision applications shortly after its introduction. In contrast, related tasks in the music audio domain remained, until recently, largely untackled. While several style conversion methods tailored to musical signals have been proposed, most lack the 'one-shot' capability of classical image style transfer algorithms. On the other hand, the results of existing one-shot audio style transfer methods on musical inputs are not as compelling. In this work, we are specifically interested in the problem of one-shot timbre transfer. We present a novel method for this task, based on an extension of the vector-quantized variational autoencoder (VQ-VAE), along with a simple self-supervised learning strategy designed to obtain disentangled representations of timbre and pitch. We evaluate the method using a set of objective metrics and show that it is able to outperform selected baselines.
Explicit Regularisation in Gaussian Noise Injections
Camuto, Alexander, Willetts, Matthew, Şimşekli, Umut, Roberts, Stephen, Holmes, Chris
We study the regularisation induced in neural networks by Gaussian noise injections (GNIs). Though such injections have been extensively studied when applied to data, there have been few studies on understanding the regularising effect they induce when applied to network activations. Here we derive the explicit regulariser of GNIs, obtained by marginalising out the injected noise, and show that it penalises functions with high-frequency components in the Fourier domain; particularly in layers closer to a neural network's output. We show analytically and empirically that such regularisation produces calibrated classifiers with large classification margins.
Hausdorff Dimension, Stochastic Differential Equations, and Generalization in Neural Networks
Şimşekli, Umut, Sener, Ozan, Deligiannidis, George, Erdogdu, Murat A.
Despite its success in a wide range of applications, characterizing the generalization properties of stochastic gradient descent (SGD) in non-convex deep learning problems is still an important challenge. While modeling the trajectories of SGD via stochastic differential equations (SDE) under heavy-tailed gradient noise has recently shed light over several peculiar characteristics of SGD, a rigorous treatment of the generalization properties of such SDEs in a learning theoretical framework is still missing. Aiming to bridge this gap, in this paper, we prove generalization bounds for SGD under the assumption that its trajectories can be well-approximated by a Feller process, which defines a rich class of Markov processes that include several recent SDE representations (both Brownian or heavy-tailed) as its special case. We show that the generalization error can be controlled by the Hausdorff dimension of the trajectories, which is intimately linked to the tail behavior of the driving process. Our results imply that heavier-tailed processes should achieve better generalization; hence, the tail-index of the process can be used as a notion of ``capacity metric''. We support our theory with experiments on deep neural networks illustrating that the proposed capacity metric accurately estimates the generalization error, and it does not necessarily grow with the number of parameters unlike the existing capacity metrics in the literature.
Approximate Bayesian Computation with the Sliced-Wasserstein Distance
Nadjahi, Kimia, De Bortoli, Valentin, Durmus, Alain, Badeau, Roland, Şimşekli, Umut
Approximate Bayesian Computation (ABC) is a popular method for approximate inference in generative models with intractable but easy-to-sample likelihood. It constructs an approximate posterior distribution by finding parameters for which the simulated data are close to the observations in terms of summary statistics. These statistics are defined beforehand and might induce a loss of information, which has been shown to deteriorate the quality of the approximation. To overcome this problem, Wasserstein-ABC has been recently proposed, and compares the datasets via the Wasserstein distance between their empirical distributions, but does not scale well to the dimension or the number of samples. We propose a new ABC technique, called Sliced-Wasserstein ABC and based on the Sliced-Wasserstein distance, which has better computational and statistical properties. We derive two theoretical results showing the asymptotical consistency of our approach, and we illustrate its advantages on synthetic data and an image denoising task.
Supervised Symbolic Music Style Translation Using Synthetic Data
Cífka, Ondřej, Şimşekli, Umut, Richard, Gaël
Research on style transfer and domain translation has clearly demonstrated the ability of deep learning-based algorithms to manipulate images in terms of artistic style. More recently, several attempts have been made to extend such approaches to music (both symbolic and audio) in order to enable transforming musical style in a similar manner. In this study, we focus on symbolic music with the goal of altering the 'style' of a piece while keeping its original 'content'. As opposed to the current methods, which are inherently restricted to be unsupervised due to the lack of 'aligned' data (i.e. the same musical piece played in multiple styles), we develop the first fully supervised algorithm for this task. At the core of our approach lies a synthetic data generation scheme which allows us to produce virtually unlimited amounts of aligned data, and hence avoid the above issue. In view of this data generation scheme, we propose an encoder-decoder model for translating symbolic music accompaniments between a number of different styles. Our experiments show that our models, although trained entirely on synthetic data, are capable of producing musically meaningful accompaniments even for real (non-synthetic) MIDI recordings.
First Exit Time Analysis of Stochastic Gradient Descent Under Heavy-Tailed Gradient Noise
Nguyen, Thanh Huy, Şimşekli, Umut, Gürbüzbalaban, Mert, Richard, Gaël
Stochastic gradient descent (SGD) has been widely used in machine learning due to its computational efficiency and favorable generalization properties. Recently, it has been empirically demonstrated that the gradient noise in several deep learning settings admits a non-Gaussian, heavy-tailed behavior. This suggests that the gradient noise can be modeled by using $\alpha$-stable distributions, a family of heavy-tailed distributions that appear in the generalized central limit theorem. In this context, SGD can be viewed as a discretization of a stochastic differential equation (SDE) driven by a L\'{e}vy motion, and the metastability results for this SDE can then be used for illuminating the behavior of SGD, especially in terms of `preferring wide minima'. While this approach brings a new perspective for analyzing SGD, it is limited in the sense that, due to the time discretization, SGD might admit a significantly different behavior than its continuous-time limit. Intuitively, the behaviors of these two systems are expected to be similar to each other only when the discretization step is sufficiently small; however, to the best of our knowledge, there is no theoretical understanding on how small the step-size should be chosen in order to guarantee that the discretized system inherits the properties of the continuous-time system. In this study, we provide formal theoretical analysis where we derive explicit conditions for the step-size such that the metastability behavior of the discrete-time system is similar to its continuous-time limit. We show that the behaviors of the two systems are indeed similar for small step-sizes and we identify how the error depends on the algorithm and problem parameters. We illustrate our results with simulations on a synthetic model and neural networks.
Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance
Nadjahi, Kimia, Durmus, Alain, Şimşekli, Umut, Badeau, Roland
Minimum expected distance estimation (MEDE) algorithms have been widely used for probabilistic models with intractable likelihood functions and they have become increasingly popular due to their use in implicit generative modeling (e.g. Wasserstein generative adversarial networks, Wasserstein autoencoders). Emerging from computational optimal transport, the Sliced-Wasserstein (SW) distance has become a popular choice in MEDE thanks to its simplicity and computational benefits. While several studies have reported empirical success on generative modeling with SW, the theoretical properties of such estimators have not yet been established. In this study, we investigate the asymptotic properties of estimators that are obtained by minimizing SW. We first show that convergence in SW implies weak convergence of probability measures in general Wasserstein spaces. Then we show that estimators obtained by minimizing SW (and also an approximate version of SW) are asymptotically consistent. We finally prove a central limit theorem, which characterizes the asymptotic distribution of the estimators and establish a convergence rate of $\sqrt{n}$, where $n$ denotes the number of observed data points. We illustrate the validity of our theory on both synthetic data and neural networks.
Non-Asymptotic Analysis of Fractional Langevin Monte Carlo for Non-Convex Optimization
Nguyen, Thanh Huy, Şimşekli, Umut, Richard, Gaël
Recent studies on diffusion-based sampling methods have shown that Langevin Monte Carlo (LMC) algorithms can be beneficial for non-convex optimization, and rigorous theoretical guarantees have been proven for both asymptotic and finite-time regimes. Algorithmically, LMC-based algorithms resemble the well-known gradient descent (GD) algorithm, where the GD recursion is perturbed by an additive Gaussian noise whose variance has a particular form. Fractional Langevin Monte Carlo (FLMC) is a recently proposed extension of LMC, where the Gaussian noise is replaced by a heavy-tailed {\alpha}-stable noise. As opposed to its Gaussian counterpart, these heavy-tailed perturbations can incur large jumps and it has been empirically demonstrated that the choice of {\alpha}-stable noise can provide several advantages in modern machine learning problems, both in optimization and sampling contexts. However, as opposed to LMC, only asymptotic convergence properties of FLMC have been yet established. In this study, we analyze the non-asymptotic behavior of FLMC for non-convex optimization and prove finite-time bounds for its expected suboptimality. Our results show that the weak-error of FLMC increases faster than LMC, which suggests using smaller step-sizes in FLMC. We finally extend our results to the case where the exact gradients are replaced by stochastic gradients and show that similar results hold in this setting as well.
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions
Şimşekli, Umut, Liutkus, Antoine, Majewski, Szymon, Durmus, Alain
By building up on the recent theory that established the connection between implicit generative modeling and optimal transport, in this study, we propose a novel parameter-free algorithm for learning the underlying distributions of complicated datasets and sampling from them. The proposed algorithm is based on a functional optimization problem, which aims at finding a measure that is close to the data distribution as much as possible and also expressive enough for generative modeling purposes. We formulate the problem as a gradient flow in the space of probability measures. The connections between gradient flows and stochastic differential equations let us develop a computationally efficient algorithm for solving the optimization problem, where the resulting algorithm resembles the recent dynamics-based Markov Chain Monte Carlo algorithms. We provide formal theoretical analysis where we prove finite-time error guarantees for the proposed algorithm. Our experimental results support our theory and shows that our algorithm is able to capture the structure of challenging distributions.
Asynchronous Stochastic Quasi-Newton MCMC for Non-Convex Optimization
Şimşekli, Umut, Yıldız, Çağatay, Nguyen, Thanh Huy, Richard, Gaël, Cemgil, A. Taylan
Recent studies have illustrated that stochastic gradient Markov Chain Monte Carlo techniques have a strong potential in non-convex optimization, where local and global convergence guarantees can be shown under certain conditions. By building up on this recent theory, in this study, we develop an asynchronous-parallel stochastic L-BFGS algorithm for non-convex optimization. The proposed algorithm is suitable for both distributed and shared-memory settings. We provide formal theoretical analysis and show that the proposed method achieves an ergodic convergence rate of ${\cal O}(1/\sqrt{N})$ ($N$ being the total number of iterations) and it can achieve a linear speedup under certain conditions. We perform several experiments on both synthetic and real datasets. The results support our theory and show that the proposed algorithm provides a significant speedup over the recently proposed synchronous distributed L-BFGS algorithm.