Goto

Collaborating Authors

 Information Technology: Overviews


Replay-and-Forget-Free Graph Class-Incremental Learning: A Task Profiling and Prompting Approach, Ling Chen 1

Neural Information Processing Systems

Class-incremental learning (CIL) aims to continually learn a sequence of tasks, with each task consisting of a set of unique classes. Graph CIL (GCIL) follows the same setting but needs to deal with graph tasks (e.g., node classification in a graph). The key characteristic of CIL lies in the absence of task identifiers (IDs) during inference, which causes a significant challenge in separating classes from different tasks (i.e., inter-task class separation). Being able to accurately predict the task IDs can help address this issue, but it is a challenging problem. In this paper, we show theoretically that accurate task ID prediction on graph data can be achieved by a Laplacian smoothing-based graph task profiling approach, in which each graph task is modeled by a task prototype based on Laplacian smoothing over the graph. It guarantees that the task prototypes of the same graph task are nearly the same with a large smoothing step, while those of different tasks are distinct due to differences in graph structure and node attributes.


Worst-Case Regret Bounds for Exploration via Randomized Value Functions

Neural Information Processing Systems

This paper studies a recent proposal to use randomized value functions to drive exploration in reinforcement learning. These randomized value functions are generated by injecting random noise into the training data, making the approach compatible with many popular methods for estimating parameterized value functions. By providing a worst-case regret bound for tabular finite-horizon Markov decision processes, we show that planning with respect to these randomized value functions can induce provably efficient exploration.


Protected Test-Time Adaptation via Online Entropy Matching: A Betting Approach Yarin Bar 1 Yaniv Romano Department of Computer Science, Technion--Israel Institute of Technology

Neural Information Processing Systems

We present a novel approach for test-time adaptation via online self-training, consisting of two components. First, we introduce a statistical framework that detects distribution shifts in the classifier's entropy values obtained on a stream of unlabeled samples. Second, we devise an online adaptation mechanism that utilizes the evidence of distribution shifts captured by the detection tool to dynamically update the classifier's parameters. The resulting adaptation process drives the distribution of test entropy values obtained from the self-trained classifier to match those of the source domain, building invariance to distribution shifts. This approach departs from the conventional self-training method, which focuses on minimizing the classifier's entropy. Our approach combines concepts in betting martingales and online learning to form a detection tool capable of quickly reacting to distribution shifts. We then reveal a tight relation between our adaptation scheme and optimal transport, which forms the basis of our novel self-supervised loss. Experimental results demonstrate that our approach improves test-time accuracy under distribution shifts while maintaining accuracy and calibration in their absence, outperforming leading entropy minimization methods across various scenarios.


A provable control of sensitivity of neural networks through a direct parameterization of the overall bi-Lipschitzness

Neural Information Processing Systems

While neural networks can enjoy an outstanding flexibility and exhibit unprecedented performance, the mechanism behind their behavior is still not wellunderstood. To tackle this fundamental challenge, researchers have tried to restrict and manipulate some of their properties in order to gain new insights and better control on them. Especially, throughout the past few years, the concept of bi-Lipschitzness has been proved as a beneficial inductive bias in many areas. However, due to its complexity, the design and control of bi-Lipschitz architectures are falling behind, and a model that is precisely designed for bi-Lipschitzness realizing a direct and simple control of the constants along with solid theoretical analysis is lacking. In this work, we investigate and propose a novel framework for bi-Lipschitzness that can achieve such a clear and tight control based on convex neural networks and the Legendre-Fenchel duality. Its desirable properties are illustrated with concrete experiments to illustrate its broad range of applications.


Hyper-opinion Evidential Deep Learning for Out-of-Distribution Detection

Neural Information Processing Systems

Evidential Deep Learning (EDL), grounded in Evidence Theory and Subjective Logic (SL), provides a robust framework to estimate uncertainty for out-ofdistribution (OOD) detection alongside traditional classification probabilities. However, the EDL framework is constrained by its focus on evidence that supports only single categories, neglecting the other collective evidences that could corroborate multiple in-distribution categories. This limitation leads to a diminished estimation of uncertainty and a subsequent decline in OOD detection performance. Additionally, EDL encounters the vanishing gradient problem within its fullyconnected layers, further degrading classification accuracy. To address these issues, we introduce hyper-domain and propose Hyper-opinion Evidential Deep Learning (HEDL).


TuneTables: Context Optimization for Scalable Prior-Data Fitted Networks

Neural Information Processing Systems

While tabular classification has traditionally relied on from-scratch training, a recent breakthrough called prior-data fitted networks (PFNs) challenges this approach. Similar to large language models, PFNs make use of pretraining and in-context learning to achieve strong performance on new tasks in a single forward pass. However, current PFNs have limitations that prohibit their widespread adoption. Notably, TabPFN achieves very strong performance on small tabular datasets but is not designed to make predictions for datasets of size larger than 1000. In this work, we overcome these limitations and substantially improve the performance of PFNs via context optimization. We introduce TuneTables, a parameter-efficient fine-tuning strategy for PFNs that compresses large datasets into a smaller learned context. We conduct extensive experiments on nineteen algorithms over 98 datasets and find that TuneTables achieves the best performance on average, outperforming boosted trees such as CatBoost, while optimizing fewer than 5% of TabPFN's parameters. Furthermore, we show that TuneTables can be used as an interpretability tool and can even be used to mitigate biases by optimizing a fairness objective.


Croissant: A Metadata Format for ML-Ready Datasets

Neural Information Processing Systems

Data is a critical resource for machine learning (ML), yet working with data remains a key friction point. This paper introduces Croissant, a metadata format for datasets that creates a shared representation across ML tools, frameworks, and platforms. Croissant makes datasets more discoverable, portable, and interoperable, thereby addressing significant challenges in ML data management. Croissant is already supported by several popular dataset repositories, spanning hundreds of thousands of datasets, enabling easy loading into the most commonly-used ML frameworks, regardless of where the data is stored. Our initial evaluation by human raters shows that Croissant metadata is readable, understandable, complete, yet concise.


Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model

Neural Information Processing Systems

This paper studies a curious phenomenon in learning energy-based model (EBM) using MCMC. In each learning iteration, we generate synthesized examples by running a non-convergent, non-mixing, and non-persistent short-run MCMC toward the current model, always starting from the same initial distribution such as uniform noise distribution, and always running a fixed number of MCMC steps. After generating synthesized examples, we then update the model parameters according to the maximum likelihood learning gradient, as if the synthesized examples are fair samples from the current model. We treat this non-convergent short-run MCMC as a learned generator model or a flow model. We provide arguments for treating the learned non-convergent short-run MCMC as a valid model. We show that the learned short-run MCMC is capable of generating realistic images. More interestingly, unlike traditional EBM or MCMC, the learned short-run MCMC is capable of reconstructing observed images and interpolating between images, like generator or flow models. The code can be found in the Appendix.


Long-form factuality in large language models

Neural Information Processing Systems

Large language models (LLMs) often generate content that contains factual errors when responding to fact-seeking prompts on open-ended topics. To benchmark a model's long-form factuality in open domains, we first use GPT-4 to generate LongFact, a prompt set comprising thousands of questions spanning 38 topics. We then propose that LLM agents can be used as automated evaluators for longform factuality through a method which we call Search-Augmented Factuality Evaluator (SAFE). SAFE utilizes an LLM to break down a long-form response into a set of individual facts and to evaluate the accuracy of each fact using a multi-step reasoning process comprising sending search queries to Google Search and determining whether a fact is supported by the search results. Furthermore, we propose extending F1 score as an aggregated metric for long-form factuality.


Understanding and Exploring the Network with Stochastic Architectures

Neural Information Processing Systems

There is an emerging trend to train a network with stochastic architectures to enable various architectures to be plugged and played during inference. However, the existing investigation is highly entangled with neural architecture search (NAS), limiting its widespread use across scenarios. In this work, we decouple the training of a network with stochastic architectures (NSA) from NAS and provide a first systematical investigation on it as a stand-alone problem. We first uncover the characteristics of NSA in various aspects ranging from training stability, convergence, predictive behaviour, to generalization capacity to unseen architectures. We identify various issues of the vanilla NSA, such as training/test disparity and function mode collapse, and further propose the solutions to these issues with theoretical and empirical insights. We believe that these results could also serve as good heuristics for NAS. Given these understandings, we further apply the NSA with our improvements into diverse scenarios to fully exploit its promise of inference-time architecture stochasticity, including model ensemble, uncertainty estimation and semi-supervised learning. Remarkable performance (e.g., 2.75% error rate and 0.0032 expected calibration error on CIFAR-10) validate the effectiveness of such a model, providing new perspectives of exploring the potential of the network with stochastic architectures, beyond NAS.