Security & Privacy
UniMTS: Unified Pre-training for Motion Time Series
Motion time series collected from low-power, always-on mobile and wearable devices such as smartphones and smartwatches offer significant insights into human behavioral patterns, with wide applications in healthcare, automation, IoT, and AR/XR. However, given security and privacy concerns, building large-scale motion time series datasets remains difficult, hindering the development of pre-trained models for human activity analysis. Typically, existing models are trained and tested on the same dataset, leading to poor generalizability across variations in device location, device mounting orientation, and human activity type.
RedCode: Risky Code Execution and Generation Benchmark for Code Agents
With the rapidly increasing capabilities and adoption of code agents for AI-assisted coding and software development, safety and security concerns, such as generating or executing malicious code, have become significant barriers to the real-world deployment of these agents. To provide comprehensive and practical evaluations on the safety of code agents, we propose RedCode, an evaluation platform with benchmarks grounded in four key principles: real interaction with systems, holistic evaluation of unsafe code generation and execution, diverse input formats, and highquality safety scenarios and tests. RedCode consists of two parts to evaluate agents' safety in unsafe code execution and generation: (1) RedCode-Exec provides challenging code prompts in Python as inputs, aiming to evaluate code agents' ability to recognize and handle unsafe code. We then map the Python code to other programming languages (e.g., Bash) and natural text summaries or descriptions for evaluation, leading to a total of over 4,000 testing instances. We provide 25 types of critical vulnerabilities spanning various domains, such as websites, file systems, and operating systems. We provide a Docker sandbox environment to evaluate the execution capabilities of code agents and design corresponding evaluation metrics to assess their execution results.
Reconstruction Attacks on Machine Unlearning: Simple Models are Vulnerable
Machine unlearning is motivated by desire for data autonomy: a person can request to have their data's influence removed from deployed models, and those models should be updated as if they were retrained without the person's data. We show that, counter-intuitively, these updates expose individuals to high-accuracy reconstruction attacks which allow the attacker to recover their data in its entirety, even when the original models are so simple that privacy risk might not otherwise have been a concern. We show how to mount a near-perfect attack on the deleted data point from linear regression models. We then generalize our attack to other loss functions and architectures, and empirically demonstrate the effectiveness of our attacks across a wide range of datasets (capturing both tabular and image data). Our work highlights that privacy risk is significant even for extremely simple model classes when individuals can request deletion of their data from the model.
Practical Differentially Private Top-k Selection with Pay-what-you-get Composition
We study the problem of top-k selection over a large domain universe subject to user-level differential privacy. Typically, the exponential mechanism or report noisy max are the algorithms used to solve this problem. However, these algorithms require querying the database for the count of each domain element. We focus on the setting where the data domain is unknown, which is different than the setting of frequent itemsets where an apriori type algorithm can help prune the space of domain elements to query. We design algorithms that ensures (approximate) (ฮต, ฮด > 0)-differential privacy and only needs access to the true top-k elements from the data for any chosen k k. We consider both the setting where a user's data can modify an arbitrary number of counts by at most 1, i.e. unrestricted sensitivity, and the setting where a user's data can modify at most some small, fixed number of counts by at most 1, i.e. restricted sensitivity. Additionally, we provide a pay-what-you-get privacy composition bound for our algorithms. That is, our algorithms might return fewer than k elements when the top-k elements are queried, but the overall privacy budget only decreases by the size of the outcome.
RFLPA: A Robust Federated Learning Framework against Poisoning Attacks with Secure Aggregation
Federated learning (FL) allows multiple devices to train a model collaboratively without sharing their data. Despite its benefits, FL is vulnerable to privacy leakage and poisoning attacks. To address the privacy concern, secure aggregation (SecAgg) is often used to obtain the aggregation of gradients on sever without inspecting individual user updates. Unfortunately, existing defense strategies against poisoning attacks rely on the analysis of local updates in plaintext, making them incompatible with SecAgg. To reconcile the conflicts, we propose a robust federated learning framework against poisoning attacks (RFLPA) based on SecAgg protocol. Our framework computes the cosine similarity between local updates and server updates to conduct robust aggregation. Furthermore, we leverage verifiable packed Shamir secret sharing to achieve reduced communication cost of O(M + N) per user, and design a novel dot product aggregation algorithm to resolve the issue of increased information leakage. Our experimental results show that RFLPA significantly reduces communication and computation overhead by over 75% compared to the state-of-the-art secret sharing method, BREA, while maintaining competitive accuracy.
Cooperative Hardware-Prompt Learning for Snapshot Compressive Imaging
Existing reconstruction models in snapshot compressive imaging systems (SCI) are trained with a single well-calibrated hardware instance, making their performance vulnerable to hardware shifts and limited in adapting to multiple hardware configurations. To facilitate cross-hardware learning, previous efforts attempt to directly collect multi-hardware data and perform centralized training, which is impractical due to severe user data privacy concerns and hardware heterogeneity across different platforms/institutions. In this study, we explicitly consider data privacy and heterogeneity in cooperatively optimizing SCI systems by proposing a Federated Hardware-Prompt learning (FedHP) framework. Rather than mitigating the client drift by rectifying the gradients, which only takes effect on the learning manifold but fails to solve the heterogeneity rooted in the input data space, FedHP learns a hardware-conditioned prompter to align inconsistent data distribution across clients, serving as an indicator of the data inconsistency among different hardware (e.g., coded apertures). Extensive experimental results demonstrate that the proposed FedHP coordinates the pre-trained model to multiple hardware configurations, outperforming prevalent FL frameworks for 0.35dB under challenging heterogeneous settings. Moreover, a Snapshot Spectral Heterogeneous Dataset has been built upon multiple practical SCI systems.
From Dictionary to Tensor: A Scalable Multi-View Subspace Clustering Framework with Triple Information Enhancement Zhibin Gu1 College of Computer and Cyber Security, Hebei Normal University, China
While Tensor-based Multi-view Subspace Clustering (TMSC) has garnered significant attention for its capacity to effectively capture high-order correlations among multiple views, three notable limitations in current TMSC methods necessitate consideration: 1) high computational complexity and reliance on dictionary completeness resulting from using observed data as the dictionary, 2) inaccurate subspace representation stemming from the oversight of local geometric information and 3) under-penalization of noise-related singular values within tensor data caused by treating all singular values equally. To address these limitations, this paper presents a Scalable TMSC framework with Triple infOrmatioN Enhancement (STONE). Notably, an enhanced anchor dictionary learning mechanism has been utilized to recover the low-rank anchor structure, resulting in reduced computational complexity and increased resilience, especially in scenarios with inadequate dictionaries. Additionally, we introduce an anchor hypergraph Laplacian regularizer to preserve the inherent geometry of the data within the subspace representation. Simultaneously, an improved hyperbolic tangent function has been employed as a precise approximation for tensor rank, effectively capturing the significant variations in singular values. Extensive experiments on a variety of datasets show that the STONE outperforms SOTA approaches in both effectiveness and efficiency.
Full-Distance Evasion of Pedestrian Detectors in the Physical World
Many studies have proposed attack methods to generate adversarial patterns for evading pedestrian detection, alarming the computer vision community about the need for more attention to the robustness of detectors. However, adversarial patterns optimized by these methods commonly have limited performance at medium to long distances in the physical world. To overcome this limitation, we identify two main challenges. First, in existing methods, there is commonly an appearance gap between simulated distant adversarial patterns and their physical world counterparts, leading to incorrect optimization. Second, there exists a conflict between adversarial losses at different distances, which causes difficulties in optimization. To overcome these challenges, we introduce a Full Distance Attack (FDA) method. Our physical world experiments demonstrate the effectiveness of our FDA patterns across various detection models like YOLOv5, Deformable-DETR, and Mask RCNN.
Partially Encrypted Machine Learning using Functional Encryption
We graciously thank the reviewers for their helpful comments. We clarify some details of the article below. Response to Reviewer 2. R2 mentions that functional encryption (FE) might not scale well and may echo R4 on this In fact, this article shows that even if FE isn't as mature as homomorphic We do detail and reference many notions from cryptology. ML community may not be familiar with those new concepts, and we sought to introduce them carefully and rigorously. In return, classical notions of ML do not need to be referenced as much because they are well established.