Natural Language
Towards Global Optimal Visual In-Context Learning Prompt Selection 2
Visual In-Context Learning (VICL) is a prevailing way to transfer visual foundation models to new tasks by leveraging contextual information contained in in-context examples to enhance learning and prediction of query samples. The fundamental problem in VICL is how to select the best prompt to activate its power as much as possible, which is equivalent to the ranking problem of testing the in-context behavior of each candidate in the alternative set and selecting the best one. To utilize a more appropriate ranking metric and more comprehensive information among the alternative set, we propose a novel in-context example selection framework to approximately identify the global optimal prompt, i.e. choosing the best performing in-context examples from all alternatives for each query sample. Our method, dubbed Partial2Global, adopts a transformer-based list-wise ranker to provide a more comprehensive comparison within several alternatives and a consistency-aware ranking aggregator to generate globally consistent ranking. The effectiveness of Partial2Global is validated through experiments on foreground segmentation, single object detection and image colorization, demonstrating that Partial2Global selects consistently better in-context examples compared with other methods, and thus establishes the new state-of-the-arts.
XMask3D: Cross-modal Mask Reasoning for Open Vocabulary 3D Semantic Segmentation Ziyi Wang Yanbo Wang
Existing methodologies in open vocabulary 3D semantic segmentation primarily concentrate on establishing a unified feature space encompassing 3D, 2D, and textual modalities. Nevertheless, traditional techniques such as global feature alignment or vision-language model distillation tend to impose only approximate correspondence, struggling notably with delineating fine-grained segmentation boundaries. To address this gap, we propose a more meticulous mask-level alignment between 3D features and the 2D-text embedding space through a cross-modal mask reasoning framework, XMask3D. In our approach, we developed a mask generator based on the denoising UNet from a pre-trained diffusion model, leveraging its capability for precise textual control over dense pixel representations and enhancing the open-world adaptability of the generated masks. We further integrate 3D global features as implicit conditions into the pre-trained 2D denoising UNet, enabling the generation of segmentation masks with additional 3D geometry awareness. Subsequently, the generated 2D masks are employed to align mask-level 3D representations with the vision-language feature space, thereby augmenting the open vocabulary capability of 3D geometry embeddings.
TableRAG: Million-Token Table Understanding with Language Models Si-An Chen 1, Julian Martin Eisenschlos
Recent advancements in language models (LMs) have notably enhanced their ability to reason with tabular data, primarily through program-aided mechanisms that manipulate and analyze tables. However, these methods often require the entire table as input, leading to scalability challenges due to the positional bias or context length constraints. In response to these challenges, we introduce TableRAG, a Retrieval-Augmented Generation (RAG) framework specifically designed for LM-based table understanding. TableRAG leverages query expansion combined with schema and cell retrieval to pinpoint crucial information before providing it to the LMs. This enables more efficient data encoding and precise retrieval, significantly reducing prompt lengths and mitigating information loss. We have developed two new million-token benchmarks from the Arcade and BIRD-SQL datasets to thoroughly evaluate TableRAG's effectiveness at scale. Our results demonstrate that TableRAG's retrieval design achieves the highest retrieval quality, leading to the new state-of-the-art performance on large-scale table understanding. The implementation and dataset will be available at https://github.com/
Locally Hierarchical Auto-Regressive Modeling for Image Generation Supplementary Document
A.1 HQ-VAE For designing HQ-VAE, we modify the encoder and decoder architectures of VQ-GAN [A1]; we set the stride of the first convolution layer in the encoder and the last transposed convolution layer in the decoder as two as mentioned in the main paper. The encoder takes an image x and returns encoded feature map z. We adopt HQ-VAE equipped with pixel-unshuffle and -shuffle for resampling. We use HQ-VAE (16 16) with f = 16 for the two-level HQ-TVAE implementation, which gives concise visual codes for efficient training of HQ-Transformer. We train HQ-VAE (16 16) for 50 epochs on the ImageNet training split.
Fast and Memory-Efficient Exact Attention with IO-Awareness
Transformers are slow and memory-hungry on long sequences, since the time and memory complexity of self-attention are quadratic in sequence length. Approximate attention methods have attempted to address this problem by trading off model quality to reduce the compute complexity, but often do not achieve wall-clock speedup. We argue that a missing principle is making attention algorithms IO-aware-- accounting for reads and writes between levels of GPU memory.
FastDrag: Manipulate Anything in One Step
Drag-based image editing using generative models provides precise control over image contents, enabling users to manipulate anything in an image with a few clicks. However, prevailing methods typically adopt n-step iterations for latent semantic optimization to achieve drag-based image editing, which is time-consuming and limits practical applications. In this paper, we introduce a novel one-step dragbased image editing method, i.e., FastDrag, to accelerate the editing process. Central to our approach is a latent warpage function (LWF), which simulates the behavior of a stretched material to adjust the location of individual pixels within the latent space. This innovation achieves one-step latent semantic optimization and hence significantly promotes editing speeds. Meanwhile, null regions emerging after applying LWF are addressed by our proposed bilateral nearest neighbor interpolation (BNNI) strategy.
Switch Head: Accelerating Transformers with Mixture-of-Experts Attention Rรณbert Csordรกs 1 Piotr Piฤkos 2 Jรผrgen Schmidhuber
Despite many recent works on Mixture of Experts (MoEs) for resource-efficient Transformer language models, existing methods mostly focus on MoEs for feedforward layers. Previous attempts at extending MoE to the self-attention layer fail to match the performance of the parameter-matched baseline. Our novel SwitchHead is an effective MoE method for the attention layer that successfully reduces both the compute and memory requirements, achieving wall-clock speedup, while matching the language modeling performance of the baseline Transformer. Our novel MoE mechanism allows SwitchHead to compute up to 8 times fewer attention matrices than the standard Transformer. SwitchHead can also be combined with MoE feedforward layers, resulting in fully-MoE "SwitchAll" Transformers. For our 262M parameter model trained on C4, SwitchHead matches the perplexity of standard models with only 44% compute and 27% memory usage. Zero-shot experiments on downstream tasks confirm the performance of SwitchHead, e.g., achieving more than 3.5% absolute improvements on BliMP compared to the baseline with an equal compute resource.
AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents Chang Ma Cheng Yang
Evaluating Large Language Models (LLMs) as general-purpose agents is essential for understanding their capabilities and facilitating their integration into practical applications. However, the evaluation process presents substantial challenges. A primary obstacle is the benchmarking of agent performance across diverse scenarios within a unified framework, especially in maintaining partially-observable environments and ensuring multi-round interactions. Moreover, current evaluation frameworks mostly focus on the final success rate, revealing few insights during the process and failing to provide a deep understanding of the model abilities.
Relationship Prompt Learning is Enough for Open-Vocabulary Semantic Segmentation Jiahao Li1, Yang Lu
Open-vocabulary semantic segmentation (OVSS) aims to segment unseen classes without corresponding labels. Existing Vision-Language Model (VLM)- based methods leverage VLM's rich knowledge to enhance additional explicit segmentation-specific networks, yielding competitive results, but at the cost of extensive training cost. To reduce the cost, we attempt to enable VLM to directly produce the segmentation results without any segmentation-specific networks. Prompt learning offers a direct and parameter-efficient approach, yet it falls short in guiding VLM for pixel-level visual classification. Therefore, we propose the Relationship Prompt Module (RPM), which generates the relationship prompt that directs VLM to extract pixel-level semantic embeddings suitable for OVSS. Moreover, RPM integrates with VLM to construct the Relationship Prompt Network (RPN), achieving OVSS without any segmentation-specific networks.
Unity by Diversity: Improved Representation Learning for Multimodal VAEs
Variational Autoencoders for multimodal data hold promise for many tasks in data analysis, such as representation learning, conditional generation, and imputation. Current architectures either share the encoder output, decoder input, or both across modalities to learn a shared representation. Such architectures impose hard constraints on the model. In this work, we show that a better latent representation can be obtained by replacing these hard constraints with a soft constraint. We propose a new mixture-of-experts prior, softly guiding each modality's latent representation towards a shared aggregate posterior. This approach results in a superior latent representation and allows each encoding to preserve information better from its uncompressed original features. In extensive experiments on multiple benchmark datasets and two challenging real-world datasets, we show improved learned latent representations and imputation of missing data modalities compared to existing methods.