Goto

Collaborating Authors

 forecasting


DeMo: Decoupling Motion Forecasting into Directional Intentions and Dynamic States

Neural Information Processing Systems

Accurate motion forecasting for traffic agents is crucial for ensuring the safety and efficiency of autonomous driving systems in dynamically changing environments. Mainstream methods adopt a one-query-one-trajectory paradigm, where each query corresponds to a unique trajectory for predicting multi-modal trajectories. While straightforward and effective, the absence of detailed representation of future trajectories may yield suboptimal outcomes, given that the agent states dynamically evolve over time. To address this problem, we introduce DeMo, a framework that decouples multi-modal trajectory queries into two types: mode queries capturing distinct directional intentions and state queries tracking the agent's dynamic states over time.


CycleNet: Enhancing Time Series Forecasting through Modeling Periodic Patterns

Neural Information Processing Systems

The stable periodic patterns present in time series data serve as the foundation for conducting long-horizon forecasts. In this paper, we pioneer the exploration of explicitly modeling this periodicity to enhance the performance of models in long-term time series forecasting (LTSF) tasks. Specifically, we introduce the Residual Cycle Forecasting (RCF) technique, which utilizes learnable recurrent cycles to model the inherent periodic patterns within sequences, and then performs predictions on the residual components of the modeled cycles. Combining RCF with a Linear layer or a shallow MLP forms the simple yet powerful method proposed in this paper, called CycleNet. CycleNet achieves state-of-theart prediction accuracy in multiple domains including electricity, weather, and energy, while offering significant efficiency advantages by reducing over 90% of the required parameter quantity. Furthermore, as a novel plug-and-play technique, the RCF can also significantly improve the prediction accuracy of existing models, including PatchTST and iTransformer.


99a401435dcb65c4008d3ad22c8cdad0-AuthorFeedback.pdf

Neural Information Processing Systems

We thank all reviewers for their constructive feedback and for their time in creating well thought out reviews. The experimental setup while BNN's have a smaller impact. We will include ablation studies in the paper. VAE-NN over three test sequences is 9.96, whereas ODE VAE-BNN error improves to 9.43. BNN systems; hence NFEs are also the same.


FinBen: A Holistic Financial Benchmark for Large Language Models

Neural Information Processing Systems

LLMs have transformed NLP and shown promise in various fields, yet their potential in finance is underexplored due to a lack of comprehensive benchmarks, the rapid development of LLMs, and the complexity of financial tasks. In this paper, we introduce FinBen, the first extensive open-source evaluation benchmark, including 42 datasets spanning 24 financial tasks, covering eight critical aspects: information extraction (IE), textual analysis, question answering (QA), text generation, risk management, forecasting, decision-making, and bilingual (English and Spanish). FinBen offers several key innovations: a broader range of tasks and datasets, the first evaluation of stock trading, novel agent and Retrieval-Augmented Generation (RAG) evaluation, and two novel datasets for regulations and stock trading. Our evaluation of 21 representative LLMs, including GPT-4, ChatGPT, and the latest Gemini, reveals several key findings: While LLMs excel in IE and textual analysis, they struggle with advanced reasoning and complex tasks like text generation and forecasting. GPT-4 excels in IE and stock trading, while Gemini is better at text generation and forecasting. Instruction-tuned LLMs improve textual analysis but offer limited benefits for complex tasks such as QA. FinBen has been used to host the first financial LLMs shared task at the FinNLP-AgentScen workshop during IJCAI-2024, attracting 12 teams. Their novel solutions outperformed GPT-4, showcasing FinBen's potential to drive innovations in financial LLMs.


abc1943857a42935ceacff03c524bb44-Paper-Conference.pdf

Neural Information Processing Systems

Unlike natural language processing and computer vision, the development of Foundation Models (FMs) for time series forecasting is blocked due to data scarcity. While recent efforts are focused on building such FMs by unlocking the potential of language models (LMs) for time series analysis, dedicated parameters for various downstream forecasting tasks need training, which hinders the common knowledge sharing across domains.


Continuous Product Graph Neural Networks

Neural Information Processing Systems

Processing multidomain data defined on multiple graphs holds significant potential in various practical applications in computer science. However, current methods are mostly limited to discrete graph filtering operations. Tensorial partial differential equations on graphs (TPDEGs) provide a principled framework for modeling structured data across multiple interacting graphs, addressing the limitations of the existing discrete methodologies. In this paper, we introduce Continuous Product Graph Neural Networks (CITRUS) that emerge as a natural solution to the TPDEG. CITRUS leverages the separability of continuous heat kernels from Cartesian graph products to efficiently implement graph spectral decomposition. We conduct thorough theoretical analyses of the stability and over-smoothing properties of CITRUS in response to domain-specific graph perturbations and graph spectra effects on the performance. We evaluate CITRUS on well-known traffic and weather spatiotemporal forecasting datasets, demonstrating superior performance over existing approaches.


Shape and Time Distortion Loss for Training Deep Time Series Forecasting Models

Neural Information Processing Systems

This paper addresses the problem of time series forecasting for non-stationary signals and multiple future steps prediction. To handle this challenging task, we introduce DILATE (DIstortion Loss including shApe and TimE), a new objective function for training deep neural networks. DILATE aims at accurately predicting sudden changes, and explicitly incorporates two terms supporting precise shape and temporal change detection. We introduce a differentiable loss function suitable for training deep neural nets, and provide a custom back-prop implementation for speeding up optimization. We also introduce a variant of DILATE, which provides a smooth generalization of temporally-constrained Dynamic Time Warping (DTW). Experiments carried out on various non-stationary datasets reveal the very good behaviour of DILATE compared to models trained with the standard Mean Squared Error (MSE) loss function, and also to DTW and variants. DILATE is also agnostic to the choice of the model, and we highlight its benefit for training fully connected networks as well as specialized recurrent architectures, showing its capacity to improve over state-of-the-art trajectory forecasting approaches.


466accbac9a66b805ba50e42ad715740-AuthorFeedback.pdf

Neural Information Processing Systems

We thank the reviewers for their meaningful and valuable comments, which help to improve the quality of our work. To fulfill R1 requests, we perform additional experiments (shown in blue) on the Traffic dataset (Table 4 in submission). AR with STDL would be an interesting future exploration. Traffic), needing to extract accurate time features. This setup will be added in the final version if accepted.


GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series

Neural Information Processing Systems

Modeling real-world multidimensional time series can be particularly challenging when these are sporadically observed (i.e., sampling is irregular both in time and across dimensions)--such as in the case of clinical patient data. To address these challenges, we propose (1) a continuous-time version of the Gated Recurrent Unit, building upon the recent Neural Ordinary Differential Equations (Chen et al., 2018), and (2) a Bayesian update network that processes the sporadic observations. We bring these two ideas together in our GRU-ODE-Bayes method. We then demonstrate that the proposed method encodes a continuity prior for the latent process and that it can exactly represent the Fokker-Planck dynamics of complex processes driven by a multidimensional stochastic differential equation. Additionally, empirical evaluation shows that our method outperforms the state of the art on both synthetic data and real-world data with applications in healthcare and climate forecast. What is more, the continuity prior is shown to be well suited for low number of samples settings.