neural network
A Convex Relaxation Barrier to Tight Robustness Verification of Neural Networks
Verification of neural networks enables us to gauge their robustness against adversarial attacks. Verification algorithms fall into two categories: exact verifiers that run in exponential time and relaxed verifiers that are efficient but incomplete. In this paper, we unify all existing LP-relaxed verifiers, to the best of our knowledge, under a general convex relaxation framework. This framework works for neural networks with diverse architectures and nonlinearities and covers both primal and dual views of neural network verification. Next, we perform large-scale experiments, amounting to more than 22 CPU-years, to obtain exact solution to the convex-relaxed problem that is optimal within our framework for ReLU networks. We find the exact solution does not significantly improve upon the gap between PGD and existing relaxed verifiers for various networks trained normally or robustly on MNIST and CIFAR datasets. Our results suggest there is an inherent barrier to tight verification for the large class of methods captured by our framework. We discuss possible causes of this barrier and potential future directions for bypassing it.
Finite Versus Infinite Neural Networks: an Empirical Study Jaehoon Lee Samuel S. Schoenholz Jeffrey Pennington Ben Adlam
We perform a careful, thorough, and large scale empirical study of the correspondence between wide neural networks and kernel methods. By doing so, we resolve a variety of open questions related to the study of infinitely wide neural networks. Our experimental results include: kernel methods outperform fully-connected finite-width networks, but underperform convolutional finite width networks; neural network Gaussian process (NNGP) kernels frequently outperform neural tangent (NT) kernels; centered and ensembled finite networks have reduced posterior variance and behave more similarly to infinite networks; weight decay and the use of a large learning rate break the correspondence between finite and infinite networks; the NTK parameterization outperforms the standard parameterization for finite width networks; diagonal regularization of kernels acts similarly to early stopping; floating point precision limits kernel performance beyond a critical dataset size; regularized ZCA whitening improves accuracy; finite network performance depends non-monotonically on width in ways not captured by double descent phenomena; equivariance of CNNs is only beneficial for narrow networks far from the kernel regime. Our experiments additionally motivate an improved layer-wise scaling for weight decay which improves generalization in finite-width networks. Finally, we develop improved best practices for using NNGP and NT kernels for prediction, including a novel ensembling technique. Using these best practices we achieve state-of-the-art results on CIFAR-10 classification for kernels corresponding to each architecture class we consider.
Learning Neural Networks with Adaptive Regularization
Han Zhao, Yao-Hung Hubert Tsai, Russ R. Salakhutdinov, Geoffrey J. Gordon
Feed-forward neural networks can be understood as a combination of an intermediate representation and a linear hypothesis. While most previous works aim to diversify the representations, we explore the complementary direction by performing an adaptive and data-dependent regularization motivated by the empirical Bayes method. Specifically, we propose to construct a matrix-variate normal prior (on weights) whose covariance matrix has a Kronecker product structure. This structure is designed to capture the correlations in neurons through backpropagation. Under the assumption of this Kronecker factorization, the prior encourages neurons to borrow statistical strength from one another.
Graph Neural Networks Need Cluster-Normalize-Activate Modules Felix Divo 1 Mohammad Amin Ali
Graph Neural Networks (GNNs) are non-Euclidean deep learning models for graphstructured data. Despite their successful and diverse applications, oversmoothing prohibits deep architectures due to node features converging to a single fixed point. This severely limits their potential to solve complex tasks. To counteract this tendency, we propose a plug-and-play module consisting of three steps: Cluster Normalize Activate (CNA). By applying CNA modules, GNNs search and form super nodes in each layer, which are normalized and activated individually. We demonstrate in node classification and property prediction tasks that CNA significantly improves the accuracy over the state-of-the-art. Particularly, CNA reaches 94.18% and 95.75% accuracy on Cora and CiteSeer, respectively. It further benefits GNNs in regression tasks as well, reducing the mean squared error compared to all baselines. At the same time, GNNs with CNA require substantially fewer learnable parameters than competing architectures.
Neural Trust Region/Proximal Policy Optimization Attains Globally Optimal Policy
Boyi Liu, Qi Cai, Zhuoran Yang, Zhaoran Wang
Proximal policy optimization and trust region policy optimization (PPO and TRPO) with actor and critic parametrized by neural networks achieve significant empirical success in deep reinforcement learning. However, due to nonconvexity, the global convergence of PPO and TRPO remains less understood, which separates theory from practice. In this paper, we prove that a variant of PPO and TRPO equipped with overparametrized neural networks converges to the globally optimal policy at a sublinear rate. The key to our analysis is the global convergence of infinite-dimensional mirror descent under a notion of one-point monotonicity, where the gradient and iterate are instantiated by neural networks. In particular, the desirable representation power and optimization geometry induced by the overparametrization of such neural networks allow them to accurately approximate the infinite-dimensional gradient and iterate.
Regularizing Trajectory Optimization with Denoising Autoencoders
Rinu Boney, Norman Di Palo, Mathias Berglund, Alexander Ilin, Juho Kannala, Antti Rasmus, Harri Valpola
Trajectory optimization using a learned model of the environment is one of the core elements of model-based reinforcement learning. This procedure often suffers from exploiting inaccuracies of the learned model. We propose to regularize trajectory optimization by means of a denoising autoencoder that is trained on the same trajectories as the model of the environment. We show that the proposed regularization leads to improved planning with both gradient-based and gradientfree optimizers. We also demonstrate that using regularized trajectory optimization leads to rapid initial learning in a set of popular motor control tasks, which suggests that the proposed approach can be a useful tool for improving sample efficiency.
21fe5b8ba755eeaece7a450849876228-AuthorFeedback.pdf
We wish to thank the reviewers for their time and thorough reviews. Our goal is to tackle high-dimensional problems (e.g. Ant has an observation space of 111 and action space of 8, we'll All of them suffered from the leaking patch problem. How this keeps planning from exploiting the inaccuracies of DAE is easiest to see in gradient-based optimization. VAE) has a spurious maximum.
Credal Deep Ensembles for Uncertainty Quantification Kaizheng Wang
This paper introduces an innovative approach to classification called Credal Deep Ensembles (CreDEs), namely, ensembles of novel Credal-Set Neural Networks (CreNets). CreNets are trained to predict a lower and an upper probability bound for each class, which, in turn, determine a convex set of probabilities (credal set) on the class set. The training employs a loss inspired by distributionally robust optimization which simulates the potential divergence of the test distribution from the training distribution, in such a way that the width of the predicted probability interval reflects the'epistemic' uncertainty about the future data distribution. Ensembles can be constructed by training multiple CreNets, each associated with a different random seed, and averaging the outputted intervals. Extensive experiments are conducted on various out-of-distributions (OOD) detection benchmarks (CIFAR10/100 vs SVHN/Tiny-ImageNet, CIFAR10 vs CIFAR10-C, ImageNet vs ImageNet-O) and using different network architectures (ResNet50, VGG16, and ViT Base). Compared to Deep Ensemble baselines, CreDEs demonstrate higher test accuracy, lower expected calibration error, and significantly improved epistemic uncertainty estimation.
Dendritic Integration Inspired Artificial Neural Networks Capture Data Correlation, and Douglas Zhou
Incorporating biological neuronal properties into Artificial Neural Networks (ANNs) to enhance computational capabilities is under active investigation in the field of deep learning. Inspired by recent findings indicating that dendrites adhere to quadratic integration rule for synaptic inputs, this study explores the computational benefits of quadratic neurons. We theoretically demonstrate that quadratic neurons inherently capture correlation within structured data, a feature that grants them superior generalization abilities over traditional neurons. This is substantiated by few-shot learning experiments. Furthermore, we integrate the quadratic rule into Convolutional Neural Networks (CNNs) using a biologically plausible approach, resulting in innovative architectures--Dendritic integration inspired CNNs (Dit-CNNs). Our Dit-CNNs compete favorably with state-of-the-art models across multiple classification benchmarks, e.g., ImageNet-1K, while retaining the simplicity and efficiency of traditional CNNs.
RegExplainer: Generating Explanations for Graph Neural Networks in Regression Tasks, Hao Mei
Graph regression is a fundamental task that has gained significant attention in various graph learning tasks. However, the inference process is often not easily interpretable. Current explanation techniques are limited to understanding Graph Neural Network (GNN) behaviors in classification tasks, leaving an explanation gap for graph regression models. In this work, we propose a novel explanation method to interpret the graph regression models (XAIG-R). Our method addresses the distribution shifting problem and continuously ordered decision boundary issues that hinder existing methods away from being applied in regression tasks. We introduce a novel objective based on the graph information bottleneck theory (GIB) and a new mix-up framework, which can support various GNNs and explainers in a model-agnostic manner. Additionally, we present a self-supervised learning strategy to tackle the continuously ordered labels in regression tasks. We evaluate our proposed method on three benchmark datasets and a real-life dataset introduced by us, and extensive experiments demonstrate its effectiveness in interpreting GNN models in regression tasks.