Goto

Collaborating Authors

 dataset


Customizing Language Models with Instance-wise LoRA for Sequential Recommendation Jiancan Wu1

Neural Information Processing Systems

Sequential recommendation systems predict the next interaction item based on users' past interactions, aligning recommendations with individual preferences. Leveraging the strengths of Large Language Models (LLMs) in knowledge comprehension and reasoning, recent approaches are eager to apply LLMs to sequential recommendation. A common paradigm is converting user behavior sequences into instruction data, and fine-tuning the LLM with parameter-efficient fine-tuning (PEFT) methods like Low-Rank Adaption (LoRA). However, the uniform application of LoRA across diverse user behaviors is insufficient to capture individual variability, resulting in negative transfer between disparate sequences. To address these challenges, we propose Instance-wise LoRA (iLoRA).


Online-Within-Online Meta-Learning

Neural Information Processing Systems

We study the problem of learning a series of tasks in a fully online Meta-Learning setting. The goal is to exploit similarities among the tasks to incrementally adapt an inner online algorithm in order to incur a low averaged cumulative error over the tasks. We focus on a family of inner algorithms based on a parametrized variant of online Mirror Descent. The inner algorithm is incrementally adapted by an online Mirror Descent meta-algorithm using the corresponding within-task minimum regularized empirical risk as the meta-loss. In order to keep the process fully online, we approximate the meta-subgradients by the online inner algorithm. An upper bound on the approximation error allows us to derive a cumulative error bound for the proposed method. Our analysis can also be converted to the statistical setting by online-to-batch arguments. We instantiate two examples of the framework in which the meta-parameter is either a common bias vector or feature map. Finally, preliminary numerical experiments confirm our theoretical findings.


e0e2b58d64fb37a2527329a5ce093d80-AuthorFeedback.pdf

Neural Information Processing Systems

We thank the reviewers for their valuable comments. We reply to each outstanding point below. A. One starting point in this direction would be to R. Related work in supplementary. A. We agree, we will move the Thanks also for the additional reference, which we will add to the paper. REVIEWER 2. R. I expected more meta-learning insights. A. The proposed framework provides us with a flexible meta-learning Furher examples in our framework are e.g.



T2Vs Meet VLMs: A Scalable Multimodal Dataset for Visual Harmfulness Recognition Chen Yeh 1 You-Ming Chang 1 Wei-Chen Chiu 1

Neural Information Processing Systems

Warning: This paper contains inappropriate/harmful visual contents. While widespread access to the Internet and the rapid advancement of generative models boost people's creativity and productivity, the risk of encountering inappropriate or harmful content also increases. To address the aforementioned issue, researchers managed to incorporate several harmful contents datasets with machine learning methods to detect harmful concepts. However, existing harmful datasets are curated by the presence of a narrow range of harmful objects, and only cover real harmful content sources. This restricts the generalizability of methods based on such datasets and leads to the potential misjudgment in certain cases. Therefore, we propose a comprehensive and extensive harmful dataset, VHD11K, consisting of 10,000 images and 1,000 videos, crawled from the Internet and generated by 4 generative models, across a total of 10 harmful categories covering a full spectrum of harmful concepts with non-trival definition. We also propose a novel annotation framework by formulating the annotation process as a multi-agent Visual Question Answering (VQA) task, having 3 different VLMs "debate" about whether the given image/video is harmful, and incorporating the in-context learning strategy in the debating process. Therefore, we can ensure that the VLMs consider the context of the given image/video and both sides of the arguments thoroughly before making decisions, further reducing the likelihood of misjudgments in edge cases. Evaluation and experimental results demonstrate that (1) the great alignment between the annotation from our novel annotation framework and those from human, ensuring the reliability of VHD11K; (2) our full-spectrum harmful dataset successfully identifies the inability of existing harmful content detection methods to detect extensive harmful contents and improves the performance of existing harmfulness recognition methods; (3) our dataset outperforms the baseline dataset, SMID, as evidenced by the superior improvement in harmfulness recognition methods.


e077e1a544eec4f0307cf5c3c721d944-AuthorFeedback.pdf

Neural Information Processing Systems

We thank the reviewers for their comments. We actually showed the unique effect of the separation loss over the other terms in suppl. Fig. S1 shows the results without the separation loss; Fig. S2 shows how the results change after the introduction of We, therefore, respectfully disagree with the reviewer's comment that "it is unclear how This is also pointed out in the main text in lines 177 and 178. KL term experimentally improves optimization, but we do not consider it as our contribution here). Please refer to Locatello et al, 2019 for the meaning of each metric.


Symmetry Discovery Beyond Affine Transformations

Neural Information Processing Systems

Symmetry detection can improve various machine learning tasks. In the context of continuous symmetry detection, current state of the art experiments are limited to detecting affine transformations. Under the manifold assumption, we outline a framework for discovering continuous symmetry in data beyond the affine transformation group. We also provide a similar framework for discovering discrete symmetry. We experimentally compare our method to an existing method known as LieGAN and show that our method is competitive at detecting affine symmetries for large sample sizes and superior than LieGAN for small sample sizes. We also show our method is able to detect continuous symmetries beyond the affine group and is generally more computationally efficient than LieGAN.


Fractal Patterns May Illuminate the Success of Next-Token Prediction

Neural Information Processing Systems

We study the fractal structure of language, aiming to provide a precise formalism for quantifying properties that may have been previously suspected but not formally shown. We establish that language is: (1) self-similar, exhibiting complexities at all levels of granularity, with no particular characteristic context length, and (2) long-range dependent (LRD), with a Hurst parameter of approximately H = 0.70 0.09. Based on these findings, we argue that short-term patterns/dependencies in language, such as in paragraphs, mirror the patterns/dependencies over larger scopes, like entire documents. This may shed some light on how next-token prediction can capture the structure of text across multiple levels of granularity, from words and clauses to broader contexts and intents. In addition, we carry out an extensive analysis across different domains and architectures, showing that fractal parameters are robust. Finally, we demonstrate that the tiny variations in fractal parameters seen across LLMs improve upon perplexity-based bits-per-byte (BPB) in predicting their downstream performance. We hope these findings offer a fresh perspective on language and the mechanisms underlying the success of LLMs.


Compositional Generalization Across Distributional Shifts with Sparse Tree Operations

Neural Information Processing Systems

Neural networks continue to struggle with compositional generalization, and this issue is exacerbated by a lack of massive pre-training. One successful approach for developing neural systems which exhibit human-like compositional generalization is hybrid neurosymbolic techniques. However, these techniques run into the core issues that plague symbolic approaches to AI: scalability and flexibility. The reason for this failure is that at their core, hybrid neurosymbolic models perform symbolic computation and relegate the scalable and flexible neural computation to parameterizing a symbolic system. We investigate a unified neurosymbolic system where transformations in the network can be interpreted simultaneously as both symbolic and neural computation. We extend a unified neurosymbolic architecture called the Differentiable Tree Machine in two central ways. First, we significantly increase the model's efficiency through the use of sparse vector representations of symbolic structures. Second, we enable its application beyond the restricted set of tree2tree problems to the more general class of seq2seq problems. The improved model retains its prior generalization capabilities and, since there is a fully neural path through the network, avoids the pitfalls of other neurosymbolic techniques that elevate symbolic computation over neural computation.


Federated Black-Box Adaptation for Semantic Segmentation

Neural Information Processing Systems

Federated Learning (FL) is a form of distributed learning that allows multiple institutions or clients to collaboratively learn a global model to solve a task. This allows the model to utilize the information from every institute while preserving data privacy. However, recent studies show that the promise of protecting the privacy of data is not upheld by existing methods and that it is possible to recreate the training data from the different institutions. This is done by utilizing gradients transferred between the clients and the global server during training or by knowing the model architecture at the client end. In this paper, we propose a federated learning framework for semantic segmentation without knowing the model architecture nor transferring gradients between the client and the server, thus enabling better privacy preservation. We propose BlackFed - a black-box adaptation of neural networks that utilizes zero order optimization (ZOO) to update the client model weights and first order optimization (FOO) to update the server weights. We evaluate our approach on several computer vision and medical imaging datasets to demonstrate its effectiveness. To the best of our knowledge, this work is one of the first works in employing federated learning for segmentation, devoid of gradients or model information exchange.