Overview
Pearls from Pebbles: Improved Confidence Functions for Auto-labeling
Auto-labeling is an important family of techniques that produce labeled training sets with minimum manual annotation. A prominent variant, threshold-based auto-labeling (TBAL), works by finding thresholds on a model's confidence scores above which it can accurately automatically label unlabeled data. However, many models are known to produce overconfident scores, leading to poor TBAL performance. While a natural idea is to apply off-the-shelf calibration methods to alleviate the overconfidence issue, we show that such methods fall short. Rather than experimenting with ad-hoc choices of confidence functions, we propose a framework for studying the optimal TBAL confidence function. We develop a tractable version of the framework to obtain Colander (Confidence functions for Efficient and Reliable Auto-labeling), a new post-hoc method specifically designed to maximize performance in TBAL systems. We perform an extensive empirical evaluation of Colander and compare it against methods designed for calibration. Colander achieves up to 60% improvement on coverage over the baselines while maintaining error level below 5% and using the same amount of labeled data.
PertEval: Unveiling Real Knowledge Capacity of LLMs with Knowledge-Invariant Perturbations
Expert-designed close-ended benchmarks are indispensable in assessing the knowledge capacity of large language models (LLMs). Despite their widespread use, concerns have mounted regarding their reliability due to limited test scenarios and an unavoidable risk of data contamination. To rectify this, we present PertEval, a toolkit devised for in-depth probing of LLMs' knowledge capacity through knowledge-invariant perturbations. These perturbations employ human-like restatement techniques to generate on-the-fly test samples from static benchmarks, meticulously retaining knowledge-critical content while altering irrelevant details. Our toolkit further includes a suite of response consistency analyses that compare performance on raw vs. perturbed test sets to precisely assess LLMs' genuine knowledge capacity.
Visual CoT: Advancing Multi-Modal Language Models with a Comprehensive Dataset and Benchmark for Chain-of-Thought Reasoning
Multi-Modal Large Language Models (MLLMs) have demonstrated impressive performance in various VQA tasks. However, they often lack interpretability and struggle with complex visual inputs, especially when the resolution of the input image is high or when the interested region that could provide key information for answering the question is small. To address these challenges, we collect and introduce the large-scale Visual CoT dataset comprising 438k question-answer pairs, annotated with intermediate bounding boxes highlighting key regions essential for answering the questions. Additionally, about 98k pairs of them are annotated with detailed reasoning steps. Importantly, we propose a multi-turn processing pipeline that dynamically focuses on visual inputs and provides interpretable thoughts. We also introduce the related benchmark to evaluate the MLLMs in scenarios requiring specific local region identification. Extensive experiments demonstrate the effectiveness of our framework and shed light on better inference strategies. The Visual CoT dataset, benchmark, and pre-trained models are available on this webpage to support further research in this area.
Large Language Models-guided Dynamic Adaptation for Temporal Knowledge Graph Reasoning
Temporal Knowledge Graph Reasoning (TKGR) is the process of utilizing temporal information to capture complex relations within a Temporal Knowledge Graph (TKG) to infer new knowledge. Conventional methods in TKGR typically depend on deep learning algorithms or temporal logical rules. However, deep learningbased TKGRs often lack interpretability, whereas rule-based TKGRs struggle to effectively learn temporal rules that capture temporal patterns. Recently, Large Language Models (LLMs) have demonstrated extensive knowledge and remarkable proficiency in temporal reasoning. Consequently, the employment of LLMs for Temporal Knowledge Graph Reasoning (TKGR) has sparked increasing interest among researchers.
xMIL: Insightful Explanations for Multiple Instance Learning in Histopathology Julius Hense 1,2,, Oliver Eberle 1,2 Thomas Schnake 1,2
Multiple instance learning (MIL) is an effective and widely used approach for weakly supervised machine learning. In histopathology, MIL models have achieved remarkable success in tasks like tumor detection, biomarker prediction, and outcome prognostication. However, MIL explanation methods are still lagging behind, as they are limited to small bag sizes or disregard instance interactions. We revisit MIL through the lens of explainable AI (XAI) and introduce xMIL, a refined framework with more general assumptions. We demonstrate how to obtain improved MIL explanations using layer-wise relevance propagation (LRP) and conduct extensive evaluation experiments on three toy settings and four real-world histopathology datasets. Our approach consistently outperforms previous explanation attempts with particularly improved faithfulness scores on challenging biomarker prediction tasks. Finally, we showcase how xMIL explanations enable pathologists to extract insights from MIL models, representing a significant advance for knowledge discovery and model debugging in digital histopathology.
HonestLLM: Toward an Honest and Helpful Large Language Model, Yue Huang
Large Language Models (LLMs) have achieved remarkable success across various industries due to their exceptional generative capabilities. However, for safe and effective real-world deployments, ensuring honesty and helpfulness is critical. This paper addresses the question: Can we prioritize the helpfulness of LLMs while preserving their honesty? To begin with, we establish exhaustive principles aimed at guaranteeing the honesty of LLM.
UDC: A Unified Neural Divide-and-Conquer Framework for Large-Scale Combinatorial Optimization Problems Xialiang Tong
Single-stage neural combinatorial optimization solvers have achieved near-optimal results on various small-scale combinatorial optimization (CO) problems without requiring expert knowledge. However, these solvers exhibit significant performance degradation when applied to large-scale CO problems. Recently, two-stage neural methods motivated by divide-and-conquer strategies have shown efficiency in addressing large-scale CO problems. Nevertheless, the performance of these methods highly relies on problem-specific heuristics in either the dividing or the conquering procedure, which limits their applicability to general CO problems. Moreover, these methods employ separate training schemes and ignore the interdependencies between the dividing and conquering strategies, often leading to sub-optimal solutions. To tackle these drawbacks, this article develops a unified neural divide-and-conquer framework (i.e., UDC) for solving general large-scale CO problems. UDC offers a Divide-Conquer-Reunion (DCR) training method to eliminate the negative impact of a sub-optimal dividing policy. Employing a high-efficiency Graph Neural Network (GNN) for global instance dividing and a fixed-length sub-path solver for conquering divided sub-problems, the proposed UDC framework demonstrates extensive applicability, achieving superior performance in 10 representative large-scale CO problems.
Exploiting Representation Curvature for Boundary Detection in Time Series
Boundaries are the timestamps at which a class in a time series changes. Recently, representation-based boundary detection has gained popularity, but its emphasis on consecutive distance difference backfires, especially when the changes are gradual. In this paper, we propose a boundary detection method, RECURVE, based on a novel change metric, the curvature of a representation trajectory, to accommodate both gradual and abrupt changes. Here, a sequence of representations in the representation space is interpreted as a trajectory, and a curvature at each timestamp can be computed. Using the theory of random walk, we formally show that the mean curvature is lower near boundaries than at other points. Extensive experiments using diverse real-world time-series datasets confirm the superiority of RECURVE over state-of-the-art methods.
Overleaf Example
Recent advancements in image understanding have benefited from the extensive use of web image-text pairs. However, video understanding remains a challenge despite the availability of substantial web video-text data. This difficulty primarily arises from the inherent complexity of videos and the inefficient language supervision in recent web-collected video-text datasets. In this paper, we introduce Text-Only Pre-Alignment (TOPA), a novel approach to extend large language models (LLMs) for video understanding, without the need for pre-training on real video data. Specifically, we first employ an advanced LLM to automatically generate Textual Videos comprising continuous textual frames, along with corresponding annotations to simulate real video-text pairs.
A Decision-Language Model (DLM) for Dynamic Restless Multi-Armed Bandit Tasks in Public Health
Restless multi-armed bandits (RMAB) have demonstrated success in optimizing resource allocation for large beneficiary populations in public health settings. Unfortunately, RMAB models lack flexibility to adapt to evolving public health policy priorities. Concurrently, Large Language Models (LLMs) have emerged as adept automated planners across domains of robotic control and navigation. In this paper, we propose a Decision Language Model (DLM) for RMABs, enabling dynamic fine-tuning of RMAB policies in public health settings using human-language commands. We propose using LLMs as automated planners to (1) interpret human policy preference prompts, (2) propose reward functions as code for a multi-agent RMAB environment, and (3) iterate on the generated reward functions using feedback from grounded RMAB simulations. We illustrate the application of DLM in collaboration with ARMMAN, an India-based non-profit promoting preventative care for pregnant mothers, that currently relies on RMAB policies to optimally allocate health worker calls to low-resource populations. We conduct a technology demonstration in simulation using the Gemini Pro model [1], showing DLM can dynamically shape policy outcomes using only human prompts as input.