Newell, A.
A preliminary analysis of the Soar architecture as a basis for general intelligence
Rosenbloom, P. S. | Laird, J. E. | Newell, A. | McCarl, R.
"In this article we take a step towards providing an analysis of the Soar architecture as a basis for general intelligence. Included are discussions of the basic assumptions underlying the development of Soar, a description of Soar cast in terms of the theoretical idea of multiple levels of description, an example of Soar performing multi-column subtraction, and three analyses of Soar: its natural tasks, the sources of its power, and its scope and limits." Artificial Intelligence, 47, 289-325.
The problem of expensive chunks and its solution by restricting expressiveness.
Tambe, M. | Newell, A. | Rosenbloom, P. S.
"Chunking, a simple experience-based learning mechanism, is Soar's only learning mechanism. Chunking creates new items of information, called chunks, based on the results of problem-solving and stores them in the knowledge base. These chunks are accessed and used in appropriate later situations to avoid the problem-solving required to determine them. It is already well-established that chunking improves performance in Soar when viewed in terms of the subproblems required and the number of steps within a subproblem. However, despite the reduction in number of steps, sometimes there may be a severe degradation in the total run time. This problem arises due to expensive chunks, i.e., chunks that require a large amount of effort in accessing them from the knowledge base. They pose a major problem for Soar, since in their presence, no guarantees can be given about Soar's performance.In this article, we establish that expensive chunks exist and analyze their causes. We use this analysis to propose a solution for expensive chunks. The solution is based on the notion of restricting the expressiveness of the representational language to guarantee that the chunks formed will require only a limited amount of accessing effort. We analyze the tradeoffs involved in restricting expressiveness and present some empirical evidence to support our analysis."Machine Learning, 5, 299-348.
SOAR: An architecture for general intelligence
Laird, J. | Newell, A. | Rosenbloom, P. S.
"The ultimate goal of work in cognitive architecture is to provide the foundation for a system capable of general intelligent behavior. That is, the goal is to provide the underlying structure that would enable a system to perform the full range of cognitive tasks, employ the full range of problem solving methods and representations appropriate for the tasks, and learn about all aspects of the tasks and its performance on them. In this article we present SOAR, an implemented proposal for such an architecture. We describe its organizational principles, the system as currently implemented, and demonstrations of its capabilities." Artificial Intelligence, 33(1):1-64.
Problem solving techniques for the design of algorithms
Kant, E. | Newell, A.
"By studying the problem-solving techniques that people use to design algorithms we can learn something about building systems that automatically derive algorithms or assist human designers. In this paper we present a model of algorithm design based on our analysis of the protocols of two subjects designing three convex hull algorithms. The subjects work mainly in a data-flow problem space in which the objects are representations of partially specified algorithms. A small number of general-purpose operators construct and modify the representations; these operators are adapted to the current problem state by means-ends analysis. The problem space also includes knowledge-rich schemas such as divide and conquer that subjects incorporate into their algorithms. A particularly versatile problem-solving method in this problem space is symbolic execution, which can be used to refine, verify, or explain components of an algorithm. The subjects also work in a task-domain space about geometry. The interplay between problem solving in the two spaces makes possible the process of discovery. We have observed that the time a subject takes to design an algorithm is proportional to the number of components in the algorithm's data-flow representation. Finally, the details of the problem spaces provide a model for building a robust automated system." Information Processing and Management 20(l-2):97-118.
Mechanisms of skill acquisition and the law of practice
Newell, A., Rosenbloom, P. S.
"Practice, and the performance improvement that it engenders, has long been a major topic in psychology. In this paper, both experimental and theoretical approaches are employed in an investigation of the mechanisms underlying this improvement On the experimental side, it is argued that a single law, the power law of practice, adequately describes all of the practice data. On the theoretical side, a model of practice rooted in modern cognitive psychology, the chunking theory of learning, is formulated. The paper consists of (1) the presentation of a set of empirical practice curves; (2) mathematical investigations into the nature of power law functions; (3) evaluations of the ability of three different classes of functions to adequately model the empirical curves; (4) a discussion of the existing models of practice; (5) a presentation of the chunking theory of learning." In J. R. Anderson (Ed.). Cognitive Skills and their Acquisition (pp. 1-55). Hillsdale, NJ: Erlbaum.
The Knowledge Level: 1980 AAAI Presidential Address
Newell, A.
AAAI Presidential Address. A classic article describing the differences in viewing computer programs at the symbol level or the knowledge level. "This is the first presidential address of AAAI, the American Association for Artificial Intelligence. In the grand scheme of history of artificial intelligence (AI), this is surely a minor event. The field this scientific society represents has been thriving for quite some time. No doubt the society itself will make solid contributions to the health of our field. But it is too much to expect a presidential address to have a major impact. So what is the role of the presidential address and what is the significance of the first one? I believe its role is to set a tone, to provide an emphasis. I think the role of the first address is to take a stand about what that tone and emphasis should be-set expectations for future addresses and to communicate to my fellow presidents. Only two foci are really possible for a presidential address: the state of the society or the state of the science. I believe the latter to be correct focus. AAAI itself, its nature and its relationship to the larger society that surrounds it, are surely important. However, our main business is to help AI become a science -- albeit a science with a strong engineering flavor. Thus, though a president's address cannot be narrow or highly technical, it can certainly address a substantive issue. That is what I propose to do." AI Magazine 2(2): Summer 1981, 1-20, 33.
Speech understanding systems: Final report of a study group
Newell, A. | Barnett, J. | Forgie, J. | Klatt, D. H. | Licklider, J. C. R. | Munson, J. | Reddy, D. R. | Woods, W. A.
"A five-year interdisciplinary effort by speech scientists and computer scientists has demonstrated the feasibility of programming a computer system to “understand” connected speech, i.e., translate it into operational form and respond accordingly. An operational system (HARPY) accepts speech from five speakers, interprets a 1000-word vocabulary, and attains 91 percent sentence accuracy. This Steering Committee summary report describes the project history, problem, goals, and results." Amsterdam: North- Holland.