Goto

Collaborating Authors

 Asia


Causal Discovery from Event Sequences by Local Cause-Effect Attribution

Neural Information Processing Systems

Sequences of events, such as crashes in the stock market or outages in a network, contain strong temporal dependencies, whose understanding is crucial to react to and influence future events. In this paper, we study the problem of discovering the underlying causal structure from event sequences. To this end, we introduce a new causal model, where individual events of the cause trigger events of the effect with dynamic delays. We show that in contrast to existing methods based on Granger causality, our model is identifiable for both instant and delayed effects. We base our approach on the Algorithmic Markov Condition, by which we identify the true causal network as the one that minimizes the Kolmogorov complexity. As the Kolmogorov complexity is not computable, we instantiate our model using Minimum Description Length and show that the resulting score identifies the causal direction.


Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity

Neural Information Processing Systems

Two of the most prominent algorithms for solving unconstrained smooth games are the classical stochastic gradient descent-ascent (SGDA) and the recently introduced stochastic consensus optimization (SCO) [Mescheder et al., 2017]. SGDA is known to converge to a stationary point for specific classes of games, but current convergence analyses require a bounded variance assumption. SCO is used successfully for solving large-scale adversarial problems, but its convergence guarantees are limited to its deterministic variant. In this work, we introduce the expected co-coercivity condition, explain its benefits, and provide the first last-iterate convergence guarantees of SGDA and SCO under this condition for solving a class of stochastic variational inequality problems that are potentially non-monotone. We prove linear convergence of both methods to a neighborhood of the solution when they use constant step-size, and we propose insightful stepsize-switching rules to guarantee convergence to the exact solution. In addition, our convergence guarantees hold under the arbitrary sampling paradigm, and as such, we give insights into the complexity of minibatching.


The Image Local Autoregressive Transformer

Neural Information Processing Systems

Recently, AutoRegressive (AR) models for the whole image generation empowered by transformers have achieved comparable or even better performance compared to Generative Adversarial Networks (GANs). Unfortunately, directly applying such AR models to edit/change local image regions, may suffer from the problems of missing global information, slow inference speed, and information leakage of local guidance. To address these limitations, we propose a novel model - image Local Autoregressive Transformer (iLAT), to better facilitate the locally guided image synthesis. Our iLAT learns the novel local discrete representations, by the newly proposed local autoregressive (LA) transformer of the attention mask and convolution mechanism. Thus iLAT can efficiently synthesize the local image regions by key guidance information. Our iLAT is evaluated on various locally guided image syntheses, such as pose-guided person image synthesis and face editing. Both quantitative and qualitative results show the efficacy of our model.


Qualcomms 2025 Computex Highlights: Everything Announced in 20 Minutes

Mashable

Qualcomm's 2025 Computex Highlights: Everything Announced in 20 Minutes Mashable Tech Science Life Social Good Entertainment Deals Shopping Games Search Cancel * * Search Result Tech Apps & Software Artificial Intelligence Cybersecurity Cryptocurrency Mobile Smart Home Social Media Tech Industry Transportation All Tech Science Space Climate Change Environment All Science Life Digital Culture Family & Parenting Health & Wellness Sex, Dating & Relationships Sleep Careers Mental Health All Life Social Good Activism Gender LGBTQ Racial Justice Sustainability Politics All Social Good Entertainment Games Movies Podcasts TV Shows Watch Guides All Entertainment SHOP THE BEST Laptops Budget Laptops Dating Apps Sexting Apps Hookup Apps VPNs Robot Vaccuums Robot Vaccum & Mop Headphones Speakers Kindles Gift Guides Mashable Choice Mashable Selects All Sex, Dating & Relationships All Laptops All Headphones All Robot Vacuums All VPN All Shopping Games Product Reviews Adult Friend Finder Bumble Premium Tinder Platinum Kindle Paperwhite PS5 vs PS5 Slim All Reviews All Shopping Deals Newsletters VIDEOS Mashable Shows All Videos Home Tech Watch all the highlights and reveals from Qualcomm's press conference at Computex 2025 in Taipei, Taiwan. Latest Videos Android XR Glasses Unveiled at Google I/O 2025 Watch Android XR Glasses in action at Google I/O 1 hour ago By Mashable Video'Caught Stealing' trailer sees Zoë Kravitz and Austin Butler's cat-sitting gone awry Darren Aronofsky's swaggering new film looks like a rollicking time. Loading... Subscribe These newsletters may contain advertising, deals, or affiliate links. By clicking Subscribe, you confirm you are 16 and agree to ourTerms of Use and Privacy Policy. See you at your inbox!


Everything Announced at AMDs 2025 Computex Keynote in 19 Minutes

Mashable

Everything Announced at AMD's 2025 Computex Keynote in 19 Minutes Mashable Tech Science Life Social Good Entertainment Deals Shopping Games Search Cancel * * Search Result Tech Apps & Software Artificial Intelligence Cybersecurity Cryptocurrency Mobile Smart Home Social Media Tech Industry Transportation All Tech Science Space Climate Change Environment All Science Life Digital Culture Family & Parenting Health & Wellness Sex, Dating & Relationships Sleep Careers Mental Health All Life Social Good Activism Gender LGBTQ Racial Justice Sustainability Politics All Social Good Entertainment Games Movies Podcasts TV Shows Watch Guides All Entertainment SHOP THE BEST Laptops Budget Laptops Dating Apps Sexting Apps Hookup Apps VPNs Robot Vaccuums Robot Vaccum & Mop Headphones Speakers Kindles Gift Guides Mashable Choice Mashable Selects All Sex, Dating & Relationships All Laptops All Headphones All Robot Vacuums All VPN All Shopping Games Product Reviews Adult Friend Finder Bumble Premium Tinder Platinum Kindle Paperwhite PS5 vs PS5 Slim All Reviews All Shopping Deals Newsletters VIDEOS Mashable Shows All Videos Home Tech Everything Announced at AMD's 2025 Computex Keynote in 19 Minutes Watch highlights from AMD's Computex press conference. Latest Videos Android XR Glasses Unveiled at Google I/O 2025 Watch Android XR Glasses in action at Google I/O 1 hour ago ByMashable Video'Caught Stealing' trailer sees Zoë Kravitz and Austin Butler's cat-sitting gone awry Darren Aronofsky's swaggering new film looks like a rollicking time. Loading... Subscribe These newsletters may contain advertising, deals, or affiliate links. By clicking Subscribe, you confirm you are 16 and agree to ourTerms of Use and Privacy Policy. See you at your inbox!


Unpacking Reward Shaping: Understanding the Benefits of Reward Engineering on Sample Complexity

Neural Information Processing Systems

Reinforcement learning provides an automated framework for learning behaviors from high-level reward specifications, but in practice the choice of reward function can be crucial for good results - while in principle the reward only needs to specify what the task is, in reality practitioners often need to design more detailed rewards that provide the agent with some hints about how the task should be completed. The idea of this type of "reward-shaping" has been often discussed in the literature, and is often a critical part of practical applications, but there is relatively little formal characterization of how the choice of reward shaping can yield benefits in sample complexity. In this work, we build on the framework of novelty-based exploration to provide a simple scheme for incorporating shaped rewards into RL along with an analysis tool to show that particular choices of reward shaping provably improve sample efficiency. We characterize the class of problems where these gains are expected to be significant and show how this can be connected to practical algorithms in the literature. We confirm that these results hold in practice in an experimental evaluation, providing an insight into the mechanisms through which reward shaping can significantly improve the complexity of reinforcement learning while retaining asymptotic performance.


Locating What You Need: Towards Adapting Diffusion Models to OOD Concepts In-the-Wild

Neural Information Processing Systems

The recent large-scale text-to-image generative models have attained unprecedented performance, while people established adaptor modules like LoRA and DreamBooth to extend this performance to even more unseen concept tokens. However, we empirically find that this workflow often fails to accurately depict the out-of-distribution concepts. This failure is highly related to the low quality of training data. To resolve this, we present a framework called Controllable Adaptor Towards Out-of-Distribution Concepts (CATOD). Our framework follows the active learning paradigm which includes high-quality data accumulation and adaptor training, enabling a finer-grained enhancement of generative results. The aesthetics score and concept-matching score are two major factors that impact the quality of synthetic results. One key component of CATOD is the weighted scoring system that automatically balances between these two scores and we also offer comprehensive theoretical analysis for this point. Then, it determines how to select data and schedule the adaptor training based on this scoring system. The extensive results show that CATOD significantly outperforms the prior approaches with an 11.10 boost on the CLIP score and a 33.08% decrease on the CMMD metric.


Beyond Euclidean: Dual-Space Representation Learning for Weakly Supervised Video Violence Detection

Neural Information Processing Systems

While numerous Video Violence Detection (VVD) methods have focused on representation learning in Euclidean space, they struggle to learn sufficiently discriminative features, leading to weaknesses in recognizing normal events that are visually similar to violent events (i.e., ambiguous violence). In contrast, hyperbolic representation learning, renowned for its ability to model hierarchical and complex relationships between events, has the potential to amplify the discrimination between visually similar events. Inspired by these, we develop a novel Dual-Space Representation Learning (DSRL) method for weakly supervised VVD to utilize the strength of both Euclidean and hyperbolic geometries, capturing the visual features of events while also exploring the intrinsic relations between events, thereby enhancing the discriminative capacity of the features. DSRL employs a novel information aggregation strategy to progressively learn event context in hyperbolic spaces, which selects aggregation nodes through layer-sensitive hyperbolic association degrees constrained by hyperbolic Dirichlet energy. Furthermore, DSRL attempts to break the cyber-balkanization of different spaces, utilizing cross-space attention to facilitate information interactions between Euclidean and hyperbolic space to capture better discriminative features for final violence detection. Comprehensive experiments demonstrate the effectiveness of our proposed DSRL.


Neural Routing by Memory

Neural Information Processing Systems

Recent Convolutional Neural Networks (CNNs) have achieved significant success by stacking multiple convolutional blocks, named procedures in this paper, to extract semantic features. However, they use the same procedure sequence for all inputs, regardless of the intermediate features.


Collaborative Video Diffusion: Consistent Multi-video Generation with Camera Control

Neural Information Processing Systems

Research on video generation has recently made tremendous progress, enabling high-quality videos to be generated from text prompts or images. Adding control to the video generation process is an important goal moving forward and recent approaches that condition video generation models on camera trajectories make strides towards it. Yet, it remains challenging to generate a video of the same scene from multiple different camera trajectories. Solutions to this multi-video generation problem could enable large-scale 3D scene generation with editable camera trajectories, among other applications. We introduce collaborative video diffusion (CVD) as an important step towards this vision. The CVD framework includes a novel cross-video synchronization module that promotes consistency between corresponding frames of the same video rendered from different camera poses using an epipolar attention mechanism. Trained on top of a state-of-the-art camera-control module for video generation, CVD generates multiple videos rendered from different camera trajectories with significantly better consistency than baselines, as shown in extensive experiments.