Vision
Voxel Mamba: Group-Free State Space Models for Point Cloud based 3D Object Detection
Serialization-based methods, which serialize the 3D voxels and group them into multiple sequences before inputting to Transformers, have demonstrated their effectiveness in 3D object detection. However, serializing 3D voxels into 1D sequences will inevitably sacrifice the voxel spatial proximity. Such an issue is hard to be addressed by enlarging the group size with existing serializationbased methods due to the quadratic complexity of Transformers with feature sizes. Inspired by the recent advances of state space models (SSMs), we present a Voxel SSM, termed as Voxel Mamba, which employs a group-free strategy to serialize the whole space of voxels into a single sequence. The linear complexity of SSMs encourages our group-free design, alleviating the loss of spatial proximity of voxels. To further enhance the spatial proximity, we propose a Dual-scale SSM Block to establish a hierarchical structure, enabling a larger receptive field in the 1D serialization curve, as well as more complete local regions in 3D space. Moreover, we implicitly apply window partition under the group-free framework by positional encoding, which further enhances spatial proximity by encoding voxel positional information. Our experiments on Waymo Open Dataset and nuScenes dataset show that Voxel Mamba not only achieves higher accuracy than state-of-the-art methods, but also demonstrates significant advantages in computational efficiency.
Lumen: Unleashing Versatile Vision-Centric Capabilities of Large Multimodal Models Yang Jiao 1,2,3
Large Multimodal Model (LMM) is a hot research topic in the computer vision area and has also demonstrated remarkable potential across multiple disciplinary fields. A recent trend is to further extend and enhance the perception capabilities of LMMs. The current methods follow the paradigm of adapting the visual task outputs to language-oriented formats. This adaptation leads to the convenient development of such LMMs with minimal modifications, however, it overlooks the inductive biases within diverse visual tasks and hinders the learning of perception capabilities. To address this issue, we propose a novel LMM architecture named Lumen, which decouples the learning of perception capabilities into task-agnostic and task-specific stages. Firstly, Lumen promotes fine-grained vision-language concept alignment, which is the fundamental capability for various visual tasks. Thus the output of the task-agnostic stage is a shared representation for all visioncentric tasks we address in this paper. Afterward, the task-specific decoding is carried out by flexibly routing the shared representation to lightweight task decoders with negligible training efforts. Comprehensive experimental results on a series of vision-centric and VQA benchmarks indicate that our Lumen model not only achieves or surpasses the performance of existing LMM-based approaches in a range of vision-centric tasks while maintaining general visual understanding and instruction following capabilities.
Multimodal Large Language Models Make Text-to-Image Generative Models Align Better
Recent studies have demonstrated the exceptional potentials of leveraging human preference datasets to refine text-to-image generative models, making it to generate more human-preferred images. Despite these advances, current human preference datasets are either prohibitively expensive to construct or suffer from a lack of diversity in preference dimensions, resulting in limited applicability for instruction tuning in open-source text-to-image generative models and hinder further exploration. To address these challenges, we first leverage multimodal large language models to create VisionPrefer, a fine-grained preference dataset that captures multiple preference aspects (prompt-following, aesthetic, fidelity, and harmlessness). Then we train a corresponding reward model, VP-Score, over VisionPrefer to guide the tuning of text-to-image generative models. The preference prediction accuracy of VP-Score is validated to be comparable to that of human annotators.
Uni-Med: A Unified Medical Generalist Foundation Model For Multi-Task Learning Via Connector-MoE Department of Electronic Engineering, Tsinghua University Fanbin Mo
Multi-modal large language models (MLLMs) have shown impressive capabilities as a general-purpose interface for various visual and linguistic tasks. However, building a unified MLLM for multi-task learning in the medical field remains a thorny challenge. To mitigate the tug-of-war problem of multi-modal multitask optimization in MLLMs, recent advances primarily focus on improving the LLM components, while neglecting the connector that bridges the gap between modalities. In this paper, we introduce Uni-Med, a novel medical generalist foundation model which consists of a universal visual feature extraction module, a connector mixture-of-experts (CMoE) module, and an LLM. Benefiting from the proposed CMoE that leverages a well-designed router with a mixture of projection experts at the connector, Uni-Med achieves efficient solution to the tug-of-war problem and can perform six different medical tasks including question answering, visual question answering, report generation, referring expression comprehension, referring expression generation and image classification. To the best of our knowledge, Uni-Med is the first effort to tackle multi-task interference at the connector in MLLMs.
Segment Any Change
Visual foundation models have achieved remarkable results in zero-shot image classification and segmentation, but zero-shot change detection remains an open problem. In this paper, we propose the segment any change models (AnyChange), a new type of change detection model that supports zero-shot prediction and generalization on unseen change types and data distributions. AnyChange is built on the segment anything model (SAM) via our training-free adaptation method, bitemporal latent matching.
93f250215e4889119807b6fac3a57aec-Paper-Conference.pdf
To date, Transformer-based frameworks have demonstrated impressive results in single-image super-resolution (SISR). However, under practical lightweight scenarios, the complex interaction of deep image feature extraction and similarity modeling limits the performance of these methods, since they require simultaneous layer-specific optimization of both two tasks. In this work, we introduce a novel Unified Projection Sharing (UPS) algorithm to decouple the feature extraction and similarity modeling. To achieve this, we establish a unified projection space defined by a learnable projection matrix, for similarity calculation across all self-attention layers. As a result, deep image feature extraction remains a per-layer optimization manner, while similarity modeling is carried out by projecting these image features onto the shared projection space. Extensive experiments demonstrate that our proposed UPS achieves state-of-the-art performance relative to leading lightweight SISR methods, as verified by various popular benchmarks. Moreover, our unified optimized projection space exhibits encouraging robustness performance for unseen data (degraded and depth images). Finally, UPS also demonstrates promising results across various image restoration tasks, including real-world and classic SISR, image denoising, and image deblocking.
Decomposing and Interpreting Image Representations via Text in ViTs Beyond CLIP
Recent work has explored how individual components of the CLIP-ViT model contribute to the final representation by leveraging the shared image-text representation space of CLIP. These components, such as attention heads and MLPs, have been shown to capture distinct image features like shape, color or texture. However, understanding the role of these components in arbitrary vision transformers (ViTs) is challenging. To this end, we introduce a general framework which can identify the roles of various components in ViTs beyond CLIP. Specifically, we (a) automate the decomposition of the final representation into contributions from different model components, and (b) linearly map these contributions to CLIP space to interpret them via text. Additionally, we introduce a novel scoring function to rank components by their importance with respect to specific features.
3D Gaussian Splatting as Markov Chain Monte Carlo
While 3D Gaussian Splatting has recently become popular for neural rendering, current methods rely on carefully engineered cloning and splitting strategies for placing Gaussians, which can lead to poor-quality renderings, and reliance on a good initialization. In this work, we rethink the set of 3D Gaussians as a random sample drawn from an underlying probability distribution describing the physical representation of the scene--in other words, Markov Chain Monte Carlo (MCMC) samples. Under this view, we show that the 3D Gaussian updates can be converted as Stochastic Gradient Langevin Dynamics (SGLD) update by simply introducing noise. We then rewrite the densification and pruning strategies in 3D Gaussian Splatting as simply a deterministic state transition of MCMC samples, removing these heuristics from the framework. To do so, we revise the'cloning' of Gaussians into a relocalization scheme that approximately preserves sample probability. To encourage efficient use of Gaussians, we introduce a regularizer that promotes the removal of unused Gaussians. On various standard evaluation scenes, we show that our method provides improved rendering quality, easy control over the number of Gaussians, and robustness to initialization.
Multi-hypotheses Conditioned Point Cloud Diffusion for 3D Human Reconstruction from Occluded Images
SMPL(- X), which are based on the statistics across human shapes, can represent whole human body shapes but are limited to minimally-clothed human shapes. Implicitfunction-based methods extract features from the parametric models to employ prior knowledge of human bodies and can capture geometric details such as clothing and hair. However, they often struggle to handle misaligned parametric models and inpaint occluded regions given a single RGB image.
FuseAnyPart: Diffusion-Driven Facial Parts Swapping via Multiple Reference Images
Figure 1: Results of facial parts swapping using the proposed FuseAnyPart at 512 512 resolution. The swapped face (central image) is generated by fusing the original face (top-left image) with three facial part reference images (bottom-left, top-right, bottom-right). Notably, FuseAnyPart can seamlessly blend facial parts from multiple reference images with significant differences in appearance, producing high-fidelity and natural-looking swapped faces.