Goto

Collaborating Authors

 segmentation


Relationship Prompt Learning is Enough for Open-Vocabulary Semantic Segmentation Jiahao Li1, Yang Lu

Neural Information Processing Systems

Open-vocabulary semantic segmentation (OVSS) aims to segment unseen classes without corresponding labels. Existing Vision-Language Model (VLM)- based methods leverage VLM's rich knowledge to enhance additional explicit segmentation-specific networks, yielding competitive results, but at the cost of extensive training cost. To reduce the cost, we attempt to enable VLM to directly produce the segmentation results without any segmentation-specific networks. Prompt learning offers a direct and parameter-efficient approach, yet it falls short in guiding VLM for pixel-level visual classification. Therefore, we propose the Relationship Prompt Module (RPM), which generates the relationship prompt that directs VLM to extract pixel-level semantic embeddings suitable for OVSS. Moreover, RPM integrates with VLM to construct the Relationship Prompt Network (RPN), achieving OVSS without any segmentation-specific networks.


Hybrid Mamba for Few-Shot Segmentation

Neural Information Processing Systems

Many few-shot segmentation (FSS) methods use cross attention to fuse support foreground (FG) into query features, regardless of the quadratic complexity. A recent advance Mamba can also well capture intra-sequence dependencies, yet the complexity is only linear. Hence, we aim to devise a cross (attention-like) Mamba to capture inter-sequence dependencies for FSS. A simple idea is to scan on support features to selectively compress them into the hidden state, which is then used as the initial hidden state to sequentially scan query features. Nevertheless, it suffers from (1) support forgetting issue: query features will also gradually be compressed when scanning on them, so the support features in hidden state keep reducing, and many query pixels cannot fuse sufficient support features; (2) intra-class gap issue: query FG is essentially more similar to itself rather than to support FG, i.e., query may prefer not to fuse support features but their own ones from the hidden state, yet the success of FSS relies on the effective use of support information. To tackle them, we design a hybrid Mamba network (HMNet), including (1) a support recapped Mamba to periodically recap the support features when scanning query, so the hidden state can always contain rich support information; (2) a query intercepted Mamba to forbid the mutual interactions among query pixels, and encourage them to fuse more support features from the hidden state. Consequently, the support information is better utilized, leading to better performance. Extensive experiments have been conducted on two public benchmarks, showing the superiority of HMNet. The code is available at https://github.com/Sam1224/HMNet.


Weakly Supervised 3D Open-vocabulary Segmentation

Neural Information Processing Systems

Open-vocabulary segmentation of 3D scenes is a fundamental function of human perception and thus a crucial objective in computer vision research. However, this task is heavily impeded by the lack of large-scale and diverse 3D open-vocabulary segmentation datasets for training robust and generalizable models. Distilling knowledge from pre-trained 2D open-vocabulary segmentation models helps but it compromises the open-vocabulary feature as the 2D models are mostly finetuned with close-vocabulary datasets. We tackle the challenges in 3D open-vocabulary segmentation by exploiting pre-trained foundation models CLIP and DINO in a weakly supervised manner. Specifically, given only the open-vocabulary text descriptions of the objects in a scene, we distill the open-vocabulary multimodal knowledge and object reasoning capability of CLIP and DINO into a neural radiance field (NeRF), which effectively lifts 2D features into view-consistent 3D segmentation. A notable aspect of our approach is that it does not require any manual segmentation annotations for either the foundation models or the distillation process. Extensive experiments show that our method even outperforms fully supervised models trained with segmentation annotations in certain scenes, suggesting that 3D open-vocabulary segmentation can be effectively learned from 2D images and textimage pairs.


A Appendix

Neural Information Processing Systems

Many of these parameters allow to generate different variants of the same scene, as depicted in 7. tissue thickness: Controls the thickness of the digital tissue section. A thicker tissue allows for overlapping nuclei in the resulting image due to the higher depth.


Arctique: An artificial histopathological dataset unifying realism and controllability for uncertainty quantification, Vanessa E. Guarino

Neural Information Processing Systems

Uncertainty Quantification (UQ) is crucial for reliable image segmentation. Yet, while the field sees continual development of novel methods, a lack of agreedupon benchmarks limits their systematic comparison and evaluation: Current UQ methods are typically tested either on overly simplistic toy datasets or on complex real-world datasets that do not allow to discern true uncertainty. To unify both controllability and complexity, we introduce Arctique, a procedurally generated dataset modeled after histopathological colon images. We chose histopathological images for two reasons: 1) their complexity in terms of intricate object structures and highly variable appearance, which yields challenging segmentation problems, and 2) their broad prevalence for medical diagnosis and respective relevance of high-quality UQ. To generate Arctique, we established a Blender-based framework for 3D scene creation with intrinsic noise manipulation. Arctique contains up to 50,000 rendered images with precise masks as well as noisy label simulations. We show that by independently controlling the uncertainty in both images and labels, we can effectively study the performance of several commonly used UQ methods. Hence, Arctique serves as a critical resource for benchmarking and advancing UQ techniques and other methodologies in complex, multi-object environments, bridging the gap between realism and controllability. All code is publicly available, allowing re-creation and controlled manipulations of our shipped images as well as creation and rendering of new scenes.


OMG-LLaVA: Bridging Image-level, Object-level, Pixel-level Reasoning and Understanding

Neural Information Processing Systems

Current universal segmentation methods demonstrate strong capabilities in pixellevel image and video understanding. However, they lack reasoning abilities and cannot be controlled via text instructions. In contrast, large vision-language multimodal models exhibit powerful vision-based conversation and reasoning capabilities but lack pixel-level understanding and have difficulty accepting visual prompts for flexible user interaction. This paper proposes OMG-LLaVA, a new and elegant framework combining powerful pixel-level vision understanding with reasoning abilities. It can accept various visual and text prompts for flexible user interaction.


Integrating Deep Metric Learning with Coreset for Active Learning in 3D Segmentation

Neural Information Processing Systems

Deep learning has seen remarkable advancements in machine learning, yet it often demands extensive annotated data. Tasks like 3D semantic segmentation impose a substantial annotation burden, especially in domains like medicine, where expert annotations drive up the cost. Active learning (AL) holds great potential to alleviate this annotation burden in 3D medical segmentation. The majority of existing AL methods, however, are not tailored to the medical domain. While weakly-supervised methods have been explored to reduce annotation burden, the fusion of AL with weak supervision remains unexplored, despite its potential to significantly reduce annotation costs.


VQ-Map: Bird's-Eye-View Map Layout Estimation in Tokenized Discrete Space via Vector Quantization

Neural Information Processing Systems

Bird's-eye-view (BEV) map layout estimation requires an accurate and full understanding of the semantics for the environmental elements around the ego car to make the results coherent and realistic. Due to the challenges posed by occlusion, unfavourable imaging conditions and low resolution, generating the BEV semantic maps corresponding to corrupted or invalid areas in the perspective view (PV) is appealing very recently. The question is how to align the PV features with the generative models to facilitate the map estimation. In this paper, we propose to utilize a generative model similar to the Vector Quantized-Variational AutoEncoder (VQ-VAE) to acquire prior knowledge for the high-level BEV semantics in the tokenized discrete space. Thanks to the obtained BEV tokens accompanied with a codebook embedding encapsulating the semantics for different BEV elements in the groundtruth maps, we are able to directly align the sparse backbone image features with the obtained BEV tokens from the discrete representation learning based on a specialized token decoder module, and finally generate high-quality BEV maps with the BEV codebook embedding serving as a bridge between PV and BEV. We evaluate the BEV map layout estimation performance of our model, termed VQ-Map, on both the nuScenes and Argoverse benchmarks, achieving 62.2/47.6 mean IoU for surround-view/monocular evaluation on nuScenes, as well as 73.4 IoU for monocular evaluation on Argoverse, which all set a new record for this map layout estimation task. The code and models are available on https://github.com/Z1zyw/VQ-Map.


VisionLLM v2: An End-to-End Generalist Multimodal Large Language Model for Hundreds of Vision-Language Tasks

Neural Information Processing Systems

Unlike traditional MLLMs limited to text output, VisionLLM v2 significantly broadens its application scope. It excels not only in conventional visual question answering (VQA) but also in open-ended, cross-domain vision tasks such as object localization, pose estimation, and image generation and editing. To this end, we propose a new information transmission mechanism termed "super link", as a medium to connect MLLM with task-specific decoders. It not only allows flexible transmission of task information and gradient feedback between the MLLM and multiple downstream decoders but also effectively resolves training conflicts in multi-tasking scenarios. In addition, to support the diverse range of tasks, we carefully collected and combed training data from hundreds of public vision and vision-language tasks. In this way, our model can be joint-trained end-to-end on hundreds of vision language tasks and generalize to these tasks using a set of shared parameters through different user prompts, achieving performance comparable to task-specific models. We believe VisionLLM v2 will offer a new perspective on the generalization of MLLMs.


Deliberated Domain Bridging for Domain Adaptive Semantic Segmentation

Neural Information Processing Systems

In unsupervised domain adaptation (UDA), directly adapting from the source to the target domain usually suffers significant discrepancies and leads to insufficient alignment. Thus, many UDA works attempt to vanish the domain gap gradually and softly via various intermediate spaces, dubbed domain bridging (DB). However, for dense prediction tasks such as domain adaptive semantic segmentation (DASS), existing solutions have mostly relied on rough style transfer and how to elegantly bridge domains is still under-explored. In this work, we resort to data mixing to establish a deliberated domain bridging (DDB) for DASS, through which the joint distributions of source and target domains are aligned and interacted with each in the intermediate space. At the heart of DDB lies a dual-path domain bridging step for generating two intermediate domains using the coarse-wise and the fine-wise data mixing techniques, alongside a cross-path knowledge distillation step for taking two complementary models trained on generated intermediate samples as'teachers' to develop a superior'student' in a multi-teacher distillation manner. These two optimization steps work in an alternating way and reinforce each other to give rise to DDB with strong adaptation power. Extensive experiments on adaptive segmentation tasks with different settings demonstrate that our DDB significantly outperforms state-of-the-art methods.