Goto

Collaborating Authors

The Workshop on Logic-Based Artificial Intelligence

AI Magazine

The Workshop on Logic-Based Artificial Intelligence (LBAI) was held in Washington, D.C., on 13 to 15 June 1999. The workshop was organized by Jack Minker and John McCarthy. Its purpose was to bring together researchers who use logic as a fundamental tool in AI to permit them to review accomplishments, assess future directions, and share their research in LBAI.


The CP 1998 Workshop on Constraint Problem Reformulation

AI Magazine

On 30 October 1998, Mihaela Sabin and I ran the Constraint Problem Reformulation Workshop in conjunction with the Fourth International Conference on the Principles and Practices of Constraint Programming held in Pisa, Italy. The goals of the workshop were to discuss the nature of constraint problem reformulation and the benefits and difficulties in reformulating constraint problems and to summarize and understand the recent work in this area.


There's More to Life Than Making Plans: Plan Management in Dynamic, Multiagent Environments

AI Magazine

For many years, research in AI plan generation was governed by a number of strong, simplifying assumptions: The planning agent is omniscient, its actions are deterministic and instantaneous, its goals are fixed and categorical, and its environment is static. More recently, researchers have developed expanded planning algorithms that are not predicated on such assumptions, but changing the way in which plans are formed is only part of what is required when the classical assumptions are abandoned. The demands of dynamic, uncertain environments mean that in addition to being able to form plans -- even probabilistic, uncertain plans -- agents must be able to effectively manage their plans. In this article, which is based on a talk given at the 1998 AAAI Fall Symposium on Distributed, Continual Planning, we first identify reasoning tasks that are involved in plan management, including commitment management, environment monitoring, alternative assessment, plan elaboration, metalevel control, and coordination with other agents. We next survey approaches we have developed to many of these tasks and discuss a plan-management system we are building to ground our theoretical work, by providing us with a platform for integrating our techniques and exploring their value in a realistic problem. Throughout, our discussion is informal and relies on numerous examples; the reader can consult the various papers cited for technical details.



Markov Localization for Mobile Robots in Dynamic Environments

Journal of Artificial Intelligence Research

Localization, that is the estimation of a robot's location from sensor data, is a fundamental problem in mobile robotics. This papers presents a version of Markov localization which provides accurate position estimates and which is tailored towards dynamic environments. The key idea of Markov localization is to maintain a probability density over the space of all locations of a robot in its environment. Our approach represents this space metrically, using a fine-grained grid to approximate densities. It is able to globally localize the robot from scratch and to recover from localization failures. It is robust to approximate models of the environment (such as occupancy grid maps) and noisy sensors (such as ultrasound sensors). Our approach also includes a filtering technique which allows a mobile robot to reliably estimate its position even in densely populated environments in which crowds of people block the robot's sensors for extended periods of time. The method described here has been implemented and tested in several real-world applications of mobile robots, including the deployments of two mobile robots as interactive museum tour-guides.


The Complexity of Reasoning about Spatial Congruence

Journal of Artificial Intelligence Research

In the recent literature of Artificial Intelligence, an intensive research effort has been spent, for various algebras of qualitative relations used in the representation of temporal and spatial knowledge, on the problem of classifying the computational complexity of reasoning problems for subsets of algebras. The main purpose of these researches is to describe a restricted set of maximal tractable subalgebras, ideally in an exhaustive fashion with respect to the hosting algebras. In this paper we introduce a novel algebra for reasoning about Spatial Congruence, show that the satisfiability problem in the spatial algebra MC-4 is NP-complete, and present a complete classification of tractability in the algebra, based on the individuation of three maximal tractable subclasses, one containing the basic relations. The three algebras are formed by 14, 10 and 9 relations out of 16 which form the full algebra.


Committee-Based Sample Selection for Probabilistic Classifiers

Journal of Artificial Intelligence Research

In many real-world learning tasks, it is expensive to acquire a sufficient number of labeled examples for training. This paper investigates methods for reducing annotation cost by `sample selection'. In this approach, during training the learning program examines many unlabeled examples and selects for labeling only those that are most informative at each stage. This avoids redundantly labeling examples that contribute little new information. Our work follows on previous research on Query By Committee, extending the committee-based paradigm to the context of probabilistic classification. We describe a family of empirical methods for committee-based sample selection in probabilistic classification models, which evaluate the informativeness of an example by measuring the degree of disagreement between several model variants. These variants (the committee) are drawn randomly from a probability distribution conditioned by the training set labeled so far. The method was applied to the real-world natural language processing task of stochastic part-of-speech tagging. We find that all variants of the method achieve a significant reduction in annotation cost, although their computational efficiency differs. In particular, the simplest variant, a two member committee with no parameters to tune, gives excellent results. We also show that sample selection yields a significant reduction in the size of the model used by the tagger.


Reasoning about Minimal Belief and Negation as Failure

Journal of Artificial Intelligence Research

We investigate the problem of reasoning in the propositional fragment of MBNF, the logic of minimal belief and negation as failure introduced by Lifschitz, which can be considered as a unifying framework for several nonmonotonic formalisms, including default logic, autoepistemic logic, circumscription, epistemic queries, and logic programming. We characterize the complexity and provide algorithms for reasoning in propositional MBNF. In particular, we show that entailment in propositional MBNF lies at the third level of the polynomial hierarchy, hence it is harder than reasoning in all the above mentioned propositional formalisms for nonmonotonic reasoning. We also prove the exact correspondence between negation as failure in MBNF and negative introspection in Moore's autoepistemic logic.


Decentralized Markets versus Central Control: A Comparative Study

Journal of Artificial Intelligence Research

Multi-Agent Systems (MAS) promise to offer solutions to problems where established, older paradigms fall short. In order to validate such claims that are repeatedly made in software agent publications, empirical in-depth studies of advantages and weaknesses of multi-agent solutions versus conventional ones in practical applications are needed. Climate control in large buildings is one application area where multi-agent systems, and market-oriented programming in particular, have been reported to be very successful, although central control solutions are still the standard practice. We have therefore constructed and implemented a variety of market designs for this problem, as well as different standard control engineering solutions. This article gives a detailed analysis and comparison, so as to learn about differences between standard versus agent approaches, and yielding new insights about benefits and limitations of computational markets. An important outcome is that ``local information plus market communication produces global control''.


A Review of Nonmonotonic Reasoning

AI Magazine

It is possible to argue, relatively convincingly, that any research topic only begins to become mature when it appears on a syllabus somewhere. Once the topic has become well enough understood that it can be explained easily to paying customers, and stable enough that anyone teaching it is not likely to have to update his/her teaching materials every few months as new developments are reported, it can be considered to have arrived. Another reasonable indicator of the maturity of a subject, a milestone along the road to academic respectability, is the publication of a really good book on the subject -- not another research monograph but a book that consolidates what is already known, surveys and relates existing ideas, and maybe even unifies some of them. Grigoris Antoniou's Nonmonotonic Reasoning is just such a milestone -- well written, informative, and a good source of information on an important and complex subject.