Educational Technology
Off-Policy Selection for Initiating Human-Centric Experimental Design Qitong Gao
In human-centric tasks such as healthcare and education, the heterogeneity among patients and students necessitates personalized treatments and instructional interventions. While reinforcement learning (RL) has been utilized in those tasks, off-policy selection (OPS) is pivotal to close the loop by offline evaluating and selecting policies without online interactions, yet current OPS methods often overlook the heterogeneity among participants. Our work is centered on resolving a pivotal challenge in human-centric systems (HCSs): how to select a policy to deploy when a new participant joining the cohort, without having access to any prior offline data collected over the participant? We introduce First-Glance Off-Policy Selection (FPS), a novel approach that systematically addresses participant heterogeneity through sub-group segmentation and tailored OPS criteria to each sub-group. By grouping individuals with similar traits, FPS facilitates personalized policy selection aligned with unique characteristics of each participant or group of participants. FPS is evaluated via two important but challenging applications, intelligent tutoring systems and a healthcare application for sepsis treatment and intervention. FPS presents significant advancement in enhancing learning outcomes of students and in-hospital care outcomes.
An Autoencoder-Like Nonnegative Matrix Co-Factorization for Improved Student Cognitive Modeling Yinghui Pan
Student cognitive modeling (SCM) is a fundamental task in intelligent education, with applications ranging from personalized learning to educational resource allocation. By exploiting students' response logs, SCM aims to predict their exercise performance as well as estimate knowledge proficiency in a subject. Data mining approaches such as matrix factorization can obtain high accuracy in predicting student performance on exercises, but the knowledge proficiency is unknown or poorly estimated. The situation is further exacerbated if only sparse interactions exist between exercises and students (or knowledge concepts). To solve this dilemma, we root monotonicity (a fundamental psychometric theory on educational assessments) in a co-factorization framework and present an autoencoder-like nonnegative matrix co-factorization (AE-NMCF), which improves the accuracy of estimating the student's knowledge proficiency via an encoder-decoder learning pipeline. The resulting estimation problem is nonconvex with nonnegative constraints. We introduce a projected gradient method based on block coordinate descent with Lipschitz constants and guarantee the method's theoretical convergence. Experiments on several real-world data sets demonstrate the efficacy of our approach in terms of both performance prediction accuracy and knowledge estimation ability, when compared with existing student cognitive models.
Information-theoretic Limits of Online Classification with Noisy Labels
We study online classification with general hypothesis classes where the true labels are determined by some function within the class, but are corrupted by unknown stochastic noise, and the features are generated adversarially. Predictions are made using observed noisy labels and noiseless features, while the performance is measured via minimax risk when comparing against true labels. The noisy mechanism is modeled via a general noisy kernel that specifies, for any individual data point, a set of distributions from which the actual noisy label distribution is chosen. We show that minimax risk is tightly characterized (up to a logarithmic factor of the hypothesis class size) by the Hellinger gap of the noisy label distributions induced by the kernel, independent of other properties such as the means and variances of the noise. Our main technique is based on a novel reduction to an online comparison scheme of two-hypotheses, along with a new conditional version of Le Cam-Birgรฉ testing suitable for online settings. Our work provides the first comprehensive characterization for noisy online classification with guarantees that apply to the ground truth while addressing general noisy observations.
Offline Contextual Bandits with High Probability Fairness Guarantees Blossom Metevier 1 Stephen Giguere 1 Sarah Brockman
We present RobinHood, an offline contextual bandit algorithm designed to satisfy a broad family of fairness constraints. Our algorithm accepts multiple fairness definitions and allows users to construct their own unique fairness definitions for the problem at hand. We provide a theoretical analysis of RobinHood, which includes a proof that it will not return an unfair solution with probability greater than a user-specified threshold. We validate our algorithm on three applications: a user study with an automated tutoring system, a loan approval setting using the Statlog German credit data set, and a criminal recidivism problem using data released by ProPublica. To demonstrate the versatility of our approach, we use multiple well-known and custom definitions of fairness. In each setting, our algorithm is able to produce fair policies that achieve performance competitive with other offline and online contextual bandit algorithms.
SocraticLM: Exploring Socratic Personalized Teaching with Large Language Models 1,2
Large language models (LLMs) are considered a crucial technology for advancing intelligent education since they exhibit the potential for an in-depth understanding of teaching scenarios and providing students with personalized guidance. Nonetheless, current LLM-based application in personalized teaching predominantly follows a "Question-Answering" paradigm, where students are passively provided with answers and explanations. In this paper, we propose SocraticLM, which achieves a Socratic "Thought-Provoking" teaching paradigm that fulfills the role of a real classroom teacher in actively engaging students in the thought process required for genuine problem-solving mastery. To build SocraticLM, we first propose a novel "Dean-Teacher-Student" multi-agent pipeline to construct a new dataset, SocraTeach, which contains 35K meticulously crafted Socratic-style multi-round (equivalent to 208K single-round) teaching dialogues grounded in fundamental mathematical problems. Our dataset simulates authentic teaching scenarios, interacting with six representative types of simulated students with different cognitive states, and strengthening four crucial teaching abilities. SocraticLM is then fine-tuned on SocraTeach with three strategies balancing its teaching and reasoning abilities. Moreover, we contribute a comprehensive evaluation system encompassing five pedagogical dimensions for assessing the teaching quality of LLMs. Extensive experiments verify that SocraticLM achieves significant improvements in the teaching performance, outperforming GPT4 by more than 12%.
SAM-Guided Masked Token Prediction for 3D Scene Understanding Liang Yang
Foundation models have significantly enhanced 2D task performance, and recent works like Bridge3D have successfully applied these models to improve 3D scene understanding through knowledge distillation, marking considerable advancements. Nonetheless, challenges such as the misalignment between 2D and 3D representations and the persistent long-tail distribution in 3D datasets still restrict the effectiveness of knowledge distillation from 2D to 3D using foundation models. To tackle these issues, we introduce a novel SAM-guided tokenization method that seamlessly aligns 3D transformer structures with region-level knowledge distillation, replacing the traditional KNN-based tokenization techniques. Additionally, we implement a group-balanced re-weighting strategy to effectively address the long-tail problem in knowledge distillation. Furthermore, inspired by the recent success of masked feature prediction, our framework incorporates a two-stage masked token prediction process in which the student model predicts both the global embeddings and the token-wise local embeddings derived from the teacher models trained in the first stage. Our methodology has been validated across multiple datasets, including SUN RGB-D, ScanNet, and S3DIS, for tasks like 3D object detection and semantic segmentation. The results demonstrate significant improvements over current State-of-the-art self-supervised methods, establishing new benchmarks in this field.
IKEA Manuals at Work: 4D Grounding of Assembly Instructions on Internet Videos
Shape assembly is a ubiquitous task in daily life, integral for constructing complex 3D structures like IKEA furniture. While significant progress has been made in developing autonomous agents for shape assembly, existing datasets have not yet tackled the 4D grounding of assembly instructions in videos, essential for a holistic understanding of assembly in 3D space over time. We introduce IKEA Video Manuals, a dataset that features 3D models of furniture parts, instructional manuals, assembly videos from the Internet, and most importantly, annotations of dense spatio-temporal alignments between these data modalities. To demonstrate the utility of IKEA Video Manuals, we present five applications essential for shape assembly: assembly plan generation, part-conditioned segmentation, partconditioned pose estimation, video object segmentation, and furniture assembly based on instructional video manuals. For each application, we provide evaluation metrics and baseline methods. Through experiments on our annotated data, we highlight many challenges in grounding assembly instructions in videos to improve shape assembly, including handling occlusions, varying viewpoints, and extended assembly sequences.
Equal Opportunity in Online Classification with Partial Feedback
Yahav Bechavod, Katrina Ligett, Aaron Roth, Bo Waggoner, Steven Z. Wu
We study an online classification problem with partial feedback in which individuals arrive one at a time from a fixed but unknown distribution, and must be classified as positive or negative. Our algorithm only observes the true label of an individual if they are given a positive classification. This setting captures many classification problems for which fairness is a concern: for example, in criminal recidivism prediction, recidivism is only observed if the inmate is released; in lending applications, loan repayment is only observed if the loan is granted. We require that our algorithms satisfy common statistical fairness constraints (such as equalizing false positive or negative rates -- introduced as "equal opportunity" in [18]) at every round, with respect to the underlying distribution. We give upper and lower bounds characterizing the cost of this constraint in terms of the regret rate (and show that it is mild), and give an oracle efficient algorithm that achieves the upper bound.
Scalable Early Childhood Reading Performance Prediction Zanming Huang 1
Models for student reading performance can empower educators and institutions to proactively identify at-risk students, thereby enabling early and tailored instructional interventions. However, there are no suitable publicly available educational datasets for modeling and predicting future reading performance. In this work, we introduce the Enhanced Core Reading Instruction (ECRI) dataset, a novel largescale longitudinal tabular dataset collected across 44 schools with 6,916 students and 172 teachers. We leverage the dataset to empirically evaluate the ability of state-of-the-art machine learning models to recognize early childhood educational patterns in multivariate and partial measurements. Specifically, we demonstrate a simple self-supervised strategy in which a Multi-Layer Perception (MLP) network is pre-trained over masked inputs to outperform several strong baselines while generalizing over diverse educational settings. To facilitate future developments in precise modeling and responsible use of models for individualized and early intervention strategies, our data and code are available at https://ecri-data.github.io/.
Teacher Teacher LLM LLM Teaching
Teaching to improve student models (e.g., knowledge distillation) is an extensively studied methodology in LLMs. However, in human education, teaching enhances not only the students but also the teachers by fostering more rigorous and clearer reasoning, as well as deeper knowledge building. We ask: Can LLMs also learn by teaching (LbT) for better reasoning? If the answer is yes, we can potentially unlock the possibility of continuously advancing the models without solely relying on human-produced data or stronger models. In this paper, we provide a preliminary exploration of this question. We show that LbT ideas can be incorporated into existing LLM training/prompting pipelines and bring improvements.