Education
Diffusion Improves Graph Learning
Graph convolution is the core of most Graph Neural Networks (GNNs) and usually approximated by message passing between direct (one-hop) neighbors. In this work, we remove the restriction of using only the direct neighbors by introducing a powerful, yet spatially localized graph convolution: Graph diffusion convolution (GDC). GDC leverages generalized graph diffusion, examples of which are the heat kernel and personalized PageRank. It alleviates the problem of noisy and often arbitrarily defined edges in real graphs. We show that GDC is closely related to spectral-based models and thus combines the strengths of both spatial (message passing) and spectral methods. We demonstrate that replacing message passing with graph diffusion convolution consistently leads to significant performance improvements across a wide range of models on both supervised and unsupervised tasks and a variety of datasets. Furthermore, GDC is not limited to GNNs but can trivially be combined with any graph-based model or algorithm (e.g.
CoMat: Aligning Text-to-Image Diffusion Model with Image-to-Text Concept Matching
Diffusion models have demonstrated great success in the field of text-to-image generation. However, alleviating the misalignment between the text prompts and images is still challenging. We break down the problem into two causes: concept ignorance and concept mismapping. To tackle the two challenges, we propose CoMat, an end-to-end diffusion model fine-tuning strategy with the imageto-text concept matching mechanism. Firstly, we introduce a novel image-totext concept activation module to guide the diffusion model in revisiting ignored concepts. Additionally, an attribute concentration module is proposed to map the text conditions of each entity to its corresponding image area correctly. Extensive experimental evaluations, conducted across three distinct text-to-image alignment benchmarks, demonstrate the superior efficacy of our proposed method, CoMat-SDXL, over the baseline model, SDXL [49]. We also show that our method enhances general condition utilization capability and generalizes to the long and complex prompt despite not specifically training on it. The code is available at https://github.com/CaraJ7/CoMat.
Efficient LLM Pretraining and Inference with Unlimited Context Length
The quadratic complexity and weak length extrapolation of Transformers limits their ability to scale to long sequences, and while sub-quadratic solutions like linear attention and state space models exist, they empirically underperform Transformers in pretraining efficiency and downstream task accuracy.
GEPS: Boosting Generalization in Parametric PDE Neural Solvers through Adaptive Conditioning
Solving parametric partial differential equations (PDEs) presents significant challenges for data-driven methods due to the sensitivity of spatio-temporal dynamics to variations in PDE parameters. Machine learning approaches often struggle to capture this variability. To address this, data-driven approaches learn parametric PDEs by sampling a very large variety of trajectories with varying PDE parameters. We first show that incorporating conditioning mechanisms for learning parametric PDEs is essential and that among them, adaptive conditioning, allows stronger generalization. As existing adaptive conditioning methods do not scale well with respect to the number of parameters to adapt in the neural solver, we propose GEPS, a simple adaptation mechanism to boost GEneralization in Pde Solvers via a first-order optimization and low-rank rapid adaptation of a small set of context parameters. We demonstrate the versatility of our approach for both fully datadriven and for physics-aware neural solvers. Validation performed on a whole range of spatio-temporal forecasting problems demonstrates excellent performance for generalizing to unseen conditions including initial conditions, PDE coefficients, forcing terms and solution domain.
Data-Efficient Pipeline for Offline Reinforcement Learning with Limited Data
Offline reinforcement learning (RL) can be used to improve future performance by leveraging historical data. There exist many different algorithms for offline RL, and it is well recognized that these algorithms, and their hyperparameter settings, can lead to decision policies with substantially differing performance. This prompts the need for pipelines that allow practitioners to systematically perform algorithmhyperparameter selection for their setting. Critically, in most real-world settings, this pipeline must only involve the use of historical data. Inspired by statistical model selection methods for supervised learning, we introduce a task-and methodagnostic pipeline for automatically training, comparing, selecting, and deploying the best policy when the provided dataset is limited in size.
Learning Versatile Skills with Curriculum Masking Yao Tang 1 Zichuan Lin 2 Deheng Ye2
Masked prediction has emerged as a promising pretraining paradigm in offline reinforcement learning (RL) due to its versatile masking schemes, enabling flexible inference across various downstream tasks with a unified model. Despite the versatility of masked prediction, it remains unclear how to balance the learning of skills at different levels of complexity. To address this, we propose CurrMask, a curriculum masking pretraining paradigm for sequential decision making. Motivated by how humans learn by organizing knowledge in a curriculum, CurrMask adjusts its masking scheme during pretraining for learning versatile skills. Through extensive experiments, we show that CurrMask exhibits superior zero-shot performance on skill prompting tasks, goal-conditioned planning tasks, and competitive finetuning performance on offline RL tasks. Additionally, our analysis of training dynamics reveals that CurrMask gradually acquires skills of varying complexity by dynamically adjusting its masking scheme. Code is available at here.
Faster Neighborhood Attention: Reducing the O(n) Cost of Self Attention at the Threadblock Level Ali Hassani 1, Wen-mei Hwu
Neighborhood attention reduces the cost of self attention by restricting each token's attention span to its nearest neighbors. This restriction, parameterized by a window size and dilation factor, draws a spectrum of possible attention patterns between linear projection and self attention. Neighborhood attention, and more generally sliding window attention patterns, have long been bounded by infrastructure, particularly in higher-rank spaces (2-D and 3-D), calling for the development of custom kernels, which have been limited in either functionality, or performance, if not both. In this work, we aim to massively improve upon existing infrastructure by providing two new methods for implementing neighborhood attention. We first show that neighborhood attention can be represented as a batched GEMM problem, similar to standard attention, and implement it for 1-D and 2-D neighborhood attention.
ODRL: A Benchmark for Off-Dynamics Reinforcement Learning
We consider off-dynamics reinforcement learning (RL) where one needs to transfer policies across different domains with dynamics mismatch. Despite the focus on developing dynamics-aware algorithms, this field is hindered due to the lack of a standard benchmark. To bridge this gap, we introduce ODRL, the first benchmark tailored for evaluating off-dynamics RL methods. ODRL contains four experimental settings where the source and target domains can be either online or offline, and provides diverse tasks and a broad spectrum of dynamics shifts, making it a reliable platform to comprehensively evaluate the agent's adaptation ability to the target domain. Furthermore, ODRL includes recent off-dynamics RL algorithms in a unified framework and introduces some extra baselines for different settings, all implemented in a single-file manner. To unpack the true adaptation capability of existing methods, we conduct extensive benchmarking experiments, which show that no method has universal advantages across varied dynamics shifts. We hope this benchmark can serve as a cornerstone for future research endeavors.
Optical Diffusion Models for Image Generation
Diffusion models generate new samples by progressively decreasing the noise from the initially provided random distribution. This inference procedure generally utilizes a trained neural network numerous times to obtain the final output, creating significant latency and energy consumption on digital electronic hardware such as GPUs. In this study, we demonstrate that the propagation of a light beam through a semi-transparent medium can be programmed to implement a denoising diffusion model on image samples. This framework projects noisy image patterns through passive diffractive optical layers, which collectively only transmit the predicted noise term in the image. The optical transparent layers, which are trained with an online training approach, backpropagating the error to the analytical model of the system, are passive and kept the same across different steps of denoising. Hence this method enables high-speed image generation with minimal power consumption, benefiting from the bandwidth and energy efficiency of optical information processing.