Image Processing
Learning to Predict Layout-to-image Conditional Convolutions for Semantic Image Synthesis
Xihui Liu, Guojun Yin, Jing Shao, Xiaogang Wang, hongsheng Li
Semantic image synthesis aims at generating photorealistic images from semantic layouts. Previous approaches with conditional generative adversarial networks (GAN) show state-of-the-art performance on this task, which either feed the semantic label maps as inputs to the generator, or use them to modulate the activations in normalization layers via affine transformations. We argue that convolutional kernels in the generator should be aware of the distinct semantic labels at different locations when generating images. In order to better exploit the semantic layout for the image generator, we propose to predict convolutional kernels conditioned on the semantic label map to generate the intermediate feature maps from the noise maps and eventually generate the images. Moreover, we propose a feature pyramid semantics-embedding discriminator, which is more effective in enhancing fine details and semantic alignments between the generated images and the input semantic layouts than previous multi-scale discriminators. We achieve state-of-the-art results on both quantitative metrics and subjective evaluation on various semantic segmentation datasets, demonstrating the effectiveness of our approach.
Fixing Implicit Derivatives: Trust-Region Based Learning of Continuous Energy Functions
Chris Russell, Matteo Toso, Neill Campbell
We present a new technique for the learning of continuous energy functions that we refer to as Wibergian Learning. One common approach to inverse problems is to cast them as an energy minimisation problem, where the minimum cost solution found is used as an estimator of hidden parameters. Our new approach formally characterises the dependency between weights that control the shape of the energy function, and the location of minima, by describing minima as fixed points of optimisation methods. This allows for the use of gradient-based end-toend training to integrate deep-learning and the classical inverse problem methods. We show how our approach can be applied to obtain state-of-the-art results in the diverse applications of tracker fusion and multiview 3D reconstruction.
Invert to Learn to Invert
Iterative learning to infer approaches have become popular solvers for inverse problems. However, their memory requirements during training grow linearly with model depth, limiting in practice model expressiveness. In this work, we propose an iterative inverse model with constant memory that relies on invertible networks to avoid storing intermediate activations. As a result, the proposed approach allows us to train models with 400 layers on 3D volumes in an MRI image reconstruction task. In experiments on a public data set, we demonstrate that these deeper, and thus more expressive, networks perform state-of-the-art image reconstruction.
Bootstrapping Top-down Information for Self-modulating Slot Attention Seoyeon Kim
Object-centric learning (OCL) aims to learn representations of individual objects within visual scenes without manual supervision, facilitating efficient and effective visual reasoning. Traditional OCL methods primarily employ bottom-up approaches that aggregate homogeneous visual features to represent objects. However, in complex visual environments, these methods often fall short due to the heterogeneous nature of visual features within an object. To address this, we propose a novel OCL framework incorporating a top-down pathway.
DA-Ada: Learning Domain-Aware Adapter for Domain Adaptive Object Detection
Domain adaptive object detection (DAOD) aims to generalize detectors trained on an annotated source domain to an unlabelled target domain. As the visual-language models (VLMs) can provide essential general knowledge on unseen images, freezing the visual encoder and inserting a domain-agnostic adapter can learn domaininvariant knowledge for DAOD. However, the domain-agnostic adapter is inevitably biased to the source domain.
MoVA: Adapting Mixture of Vision Experts to Multimodal Context Bingqi Ma2, Guanglu Song 2
As the key component in multimodal large language models (MLLMs), the ability of the visual encoder greatly affects MLLM's understanding on diverse image content. Although some large-scale pretrained vision encoders such as vision encoders in CLIP and DINOv2 have brought promising performance, we found that there is still no single vision encoder that can dominate various image content understanding, e.g., the CLIP vision encoder leads to outstanding results on general image understanding but poor performance on document or chart content. To alleviate the bias of CLIP vision encoder, we first delve into the inherent behavior of different pre-trained vision encoders and then propose the MoVA, a powerful and novel MLLM, adaptively routing and fusing task-specific vision experts with a coarse-to-fine mechanism. In the coarse-grained stage, we design a contextaware expert routing strategy to dynamically select the most suitable vision experts according to the user instruction, input image, and expertise of vision experts.
Seeing Beyond the Crop: Using Language Priors for Out-of-Bounding Box Keypoint Prediction
Accurate estimation of human pose and the pose of interacting objects, like a hockey stick, is crucial for action recognition and performance analysis, particularly in sports. Existing methods capture the object along with the human in the bounding boxes, assuming all keypoints are visible within the bounding box. This necessitates larger bounding boxes to capture the object, introducing unnecessary visual features and hindering performance in real-world cluttered environments. We propose a simple image and text-based multimodal solution TokenCLIPose that addresses this limitation. Our approach focuses solely on human keypoints within the bounding box, treating objects as unseen. TokenCLIPose leverages the rich semantic representations endowed by language for inducing keypoint-specific context, even for occluded keypoints. We evaluate the performance of TokenCLIPose on a real-world ice hockey dataset, and demonstrate its generalizability through zero-shot transfer to a smaller Lacrosse dataset.
CIFD: Controlled Information Flow to Enhance Knowledge Distillation
Knowledge Distillation is the mechanism by which the insights gained from a larger teacher model are transferred to a smaller student model. However, the transfer suffers when the teacher model is significantly larger than the student. To overcome this, prior works have proposed training intermediately sized models, Teacher Assistants (TAs) to help the transfer process. However, training TAs is expensive, as training these models is a knowledge transfer task in itself. Further, these TAs are larger than the student model and training them especially in large data settings can be computationally intensive.
Visual Decoding and Reconstruction via EEG Embeddings with Guided Diffusion
How to decode human vision through neural signals has attracted a long-standing interest in neuroscience and machine learning. Modern contrastive learning and generative models improved the performance of visual decoding and reconstruction based on functional Magnetic Resonance Imaging (fMRI). However, the high cost and low temporal resolution of fMRI limit their applications in brain-computer interfaces (BCIs), prompting a high need for visual decoding based on electroencephalography (EEG). In this study, we present an end-to-end EEG-based visual reconstruction zero-shot framework, consisting of a tailored brain encoder, called the Adaptive Thinking Mapper (ATM), which projects neural signals from different sources into the shared subspace as the clip embedding, and a two-stage multi-pipe EEG-to-image generation strategy. In stage one, EEG is embedded to align the highlevel clip embedding, and then the prior diffusion model refines EEG embedding into image priors.
Continuous Heatmap Regression for Pose Estimation via Implicit Neural Representation
Heatmap regression has dominated human pose estimation due to its superior performance and strong generalization. To meet the requirements of traditional explicit neural networks for output form, existing heatmap-based methods discretize the originally continuous heatmap representation into 2D pixel arrays, which leads to performance degradation due to the introduction of quantization errors. This problem is significantly exacerbated as the size of the input image decreases, which makes heatmap-based methods not much better than coordinate regression on low-resolution images. In this paper, we propose a novel neural representation for human pose estimation called NerPE to achieve continuous heatmap regression. Given any position within the image range, NerPE regresses the corresponding confidence scores for body joints according to the surrounding image features, which guarantees continuity in space and confidence during training. Thanks to the decoupling from spatial resolution, NerPE can output the predicted heatmaps at arbitrary resolution during inference without retraining, which easily achieves sub-pixel localization precision. To reduce the computational cost, we design progressive coordinate decoding to cooperate with continuous heatmap regression, in which localization no longer requires the complete generation of high-resolution heatmaps.