Goto

Collaborating Authors

 Neural Networks


Locally Hierarchical Auto-Regressive Modeling for Image Generation Supplementary Document

Neural Information Processing Systems

A.1 HQ-VAE For designing HQ-VAE, we modify the encoder and decoder architectures of VQ-GAN [A1]; we set the stride of the first convolution layer in the encoder and the last transposed convolution layer in the decoder as two as mentioned in the main paper. The encoder takes an image x and returns encoded feature map z. We adopt HQ-VAE equipped with pixel-unshuffle and -shuffle for resampling. We use HQ-VAE (16 16) with f = 16 for the two-level HQ-TVAE implementation, which gives concise visual codes for efficient training of HQ-Transformer. We train HQ-VAE (16 16) for 50 epochs on the ImageNet training split.


Locally Hierarchical Auto-Regressive Modeling for Image Generation 3,5

Neural Information Processing Systems

We propose a locally hierarchical auto-regressive model with multiple resolutions of discrete codes. In the first stage of our algorithm, we represent an image with a pyramid of codes using Hierarchically Quantized Variational AutoEncoder (HQ-VAE), which disentangles the information contained in the multi-level codes. For an example of two-level codes, we create two separate pathways to carry high-level coarse structures of input images using top codes while compensating for missing fine details by constructing a residual connection for bottom codes. An appropriate selection of resizing operations for code embedding maps enables top codes to capture maximal information within images and the first stage algorithm achieves better performance on both vector quantization and image generation. The second stage adopts Hierarchically Quantized Transformer (HQ-Transformer) to process a sequence of local pyramids, which consist of a single top code and its corresponding bottom codes.


Meta-Learning with Implicit Gradients

Neural Information Processing Systems

A core capability of intelligent systems is the ability to quickly learn new tasks by drawing on prior experience. Gradient (or optimization) based meta-learning has recently emerged as an effective approach for few-shot learning. In this formulation, meta-parameters are learned in the outer loop, while task-specific models are learned in the inner-loop, by using only a small amount of data from the current task. A key challenge in scaling these approaches is the need to differentiate through the inner loop learning process, which can impose considerable computational and memory burdens. By drawing upon implicit differentiation, we develop the implicit MAML algorithm, which depends only on the solution to the inner level optimization and not the path taken by the inner loop optimizer.


Fast and Memory-Efficient Exact Attention with IO-Awareness

Neural Information Processing Systems

Transformers are slow and memory-hungry on long sequences, since the time and memory complexity of self-attention are quadratic in sequence length. Approximate attention methods have attempted to address this problem by trading off model quality to reduce the compute complexity, but often do not achieve wall-clock speedup. We argue that a missing principle is making attention algorithms IO-aware-- accounting for reads and writes between levels of GPU memory.


S-MolSearch: 3D Semi-supervised Contrastive Learning for Bioactive Molecule Search

Neural Information Processing Systems

Virtual Screening is an essential technique in the early phases of drug discovery, aimed at identifying promising drug candidates from vast molecular libraries. Recently, ligand-based virtual screening has garnered significant attention due to its efficacy in conducting extensive database screenings without relying on specific protein-binding site information. Obtaining binding affinity data for complexes is highly expensive, resulting in a limited amount of available data that covers a relatively small chemical space. Moreover, these datasets contain a significant amount of inconsistent noise. It is challenging to identify an inductive bias that consistently maintains the integrity of molecular activity during data augmentation. To tackle these challenges, we propose S-MolSearch, the first framework to our knowledge, that leverages molecular 3D information and affinity information in semi-supervised contrastive learning for ligand-based virtual screening. Drawing on the principles of inverse optimal transport, S-MolSearch efficiently processes both labeled and unlabeled data, training molecular structural encoders while generating soft labels for the unlabeled data. This design allows S-MolSearch to adaptively utilize unlabeled data within the learning process. Empirically, S-MolSearch demonstrates superior performance on widely-used benchmarks LIT-PCBA and DUD-E.


Stochastic Kernel Regularisation Improves Generalisation in Deep Kernel Machines

Neural Information Processing Systems

Recent work developed convolutional deep kernel machines, achieving 92.7% test accuracy on CIFAR-10 using a ResNet-inspired architecture, which is SOTA for kernel methods. However, this still lags behind neural networks, which easily achieve over 94% test accuracy with similar architectures. In this work we introduce several modifications to improve the convolutional deep kernel machine's generalisation, including stochastic kernel regularisation, which adds noise to the learned Gram matrices during training. The resulting model achieves 94.5% test accuracy on CIFAR-10. This finding has important theoretical and practical implications, as it demonstrates that the ability to perform well on complex tasks like image classification is not unique to neural networks. Instead, other approaches including deep kernel methods can achieve excellent performance on such tasks, as long as they have the capacity to learn representations from data.


Revisiting Non-Parametric Matching Cost Volumes for Robust and Generalizable Stereo Matching Kelvin Cheng and Christopher Healey

Neural Information Processing Systems

Stereo matching is a classic challenging problem in computer vision, which has recently witnessed remarkable progress by Deep Neural Networks (DNNs). This paradigm shift leads to two interesting and entangled questions that have not been addressed well. First, it is unclear whether stereo matching DNNs that are trained from scratch really learn to perform matching well.


Decoupled Kullback-Leibler Divergence Loss Xiaojuan Qi

Neural Information Processing Systems

In this paper, we delve deeper into the Kullback-Leibler (KL) Divergence loss and mathematically prove that it is equivalent to the Decoupled Kullback-Leibler (DKL) Divergence loss that consists of 1) a weighted Mean Square Error (wMSE) loss and 2) a Cross-Entropy loss incorporating soft labels. Thanks to the decomposed formulation of DKL loss, we have identified two areas for improvement. Firstly, we address the limitation of KL/DKL in scenarios like knowledge distillation by breaking its asymmetric optimization property. This modification ensures that the wMSE component is always effective during training, providing extra constructive cues. Secondly, we introduce class-wise global information into KL/DKL to mitigate bias from individual samples. With these two enhancements, we derive the Improved Kullback-Leibler (IKL) Divergence loss and evaluate its effectiveness by conducting experiments on CIFAR-10/100 and ImageNet datasets, focusing on adversarial training, and knowledge distillation tasks. The proposed approach achieves new state-of-the-art adversarial robustness on the public leaderboard -- RobustBench and competitive performance on knowledge distillation, demonstrating the substantial practical merits. Our code is available at https://github.com/jiequancui/DKL.


FastDrag: Manipulate Anything in One Step

Neural Information Processing Systems

Drag-based image editing using generative models provides precise control over image contents, enabling users to manipulate anything in an image with a few clicks. However, prevailing methods typically adopt n-step iterations for latent semantic optimization to achieve drag-based image editing, which is time-consuming and limits practical applications. In this paper, we introduce a novel one-step dragbased image editing method, i.e., FastDrag, to accelerate the editing process. Central to our approach is a latent warpage function (LWF), which simulates the behavior of a stretched material to adjust the location of individual pixels within the latent space. This innovation achieves one-step latent semantic optimization and hence significantly promotes editing speeds. Meanwhile, null regions emerging after applying LWF are addressed by our proposed bilateral nearest neighbor interpolation (BNNI) strategy.


Switch Head: Accelerating Transformers with Mixture-of-Experts Attention Róbert Csordás 1 Piotr Piękos 2 Jürgen Schmidhuber

Neural Information Processing Systems

Despite many recent works on Mixture of Experts (MoEs) for resource-efficient Transformer language models, existing methods mostly focus on MoEs for feedforward layers. Previous attempts at extending MoE to the self-attention layer fail to match the performance of the parameter-matched baseline. Our novel SwitchHead is an effective MoE method for the attention layer that successfully reduces both the compute and memory requirements, achieving wall-clock speedup, while matching the language modeling performance of the baseline Transformer. Our novel MoE mechanism allows SwitchHead to compute up to 8 times fewer attention matrices than the standard Transformer. SwitchHead can also be combined with MoE feedforward layers, resulting in fully-MoE "SwitchAll" Transformers. For our 262M parameter model trained on C4, SwitchHead matches the perplexity of standard models with only 44% compute and 27% memory usage. Zero-shot experiments on downstream tasks confirm the performance of SwitchHead, e.g., achieving more than 3.5% absolute improvements on BliMP compared to the baseline with an equal compute resource.