Goto

Collaborating Authors

 Country


Neuro-Vision to Language: Enhancing Brain Recording-based Visual Reconstruction and Language Interaction

Neural Information Processing Systems

Decoding non-invasive brain recordings is pivotal for advancing our understanding of human cognition but faces challenges due to individual differences and complex neural signal representations. Traditional methods often require customized models and extensive trials, lacking interpretability in visual reconstruction tasks.


GSDF: 3DGS Meets SDF for Improved Neural Rendering and Reconstruction

Neural Information Processing Systems

Representing 3D scenes from multiview images remains a core challenge in computer vision and graphics, requiring both reliable rendering and reconstruction, which often conflicts due to the mismatched prioritization of image quality over precise underlying scene geometry. Although both neural implicit surfaces and explicit Gaussian primitives have advanced with neural rendering techniques, current methods impose strict constraints on density fields or primitive shapes, which enhances the affinity for geometric reconstruction at the sacrifice of rendering quality. To address this dilemma, we introduce GSDF, a dual-branch architecture combining 3D Gaussian Splatting (3DGS) and neural Signed Distance Fields (SDF). Our approach leverages mutual guidance and joint supervision during the training process to mutually enhance reconstruction and rendering. Specifically, our method guides the Gaussian primitives to locate near potential surfaces and accelerates the SDF convergence. This implicit mutual guidance ensures robustness and accuracy in both synthetic and real-world scenarios. Experimental results demonstrate that our method boosts the SDF optimization process to reconstruct more detailed geometry, while reducing floaters and blurry edge artifacts in rendering by aligning Gaussian primitives with the underlying geometry.


From Boltzmann Machines to Neural Networks and Back Again

Neural Information Processing Systems

Graphical models are powerful tools for modeling high-dimensional data, but learning graphical models in the presence of latent variables is well-known to be difficult. In this work we give new results for learning Restricted Boltzmann Machines, probably the most well-studied class of latent variable models.


Exponential Quantum Communication Advantage in Distributed Inference and Learning

Neural Information Processing Systems

Training and inference with large machine learning models that far exceed the memory capacity of individual devices necessitates the design of distributed architectures, forcing one to contend with communication constraints. We present a framework for distributed computation over a quantum network in which data is encoded into specialized quantum states. We prove that for models within this framework, inference and training using gradient descent can be performed with exponentially less communication compared to their classical analogs, and with relatively modest overhead relative to standard gradient-based methods. We show that certain graph neural networks are particularly amenable to implementation within this framework, and moreover present empirical evidence that they perform well on standard benchmarks. To our knowledge, this is the first example of exponential quantum advantage for a generic class of machine learning problems that hold regardless of the data encoding cost. Moreover, we show that models in this class can encode highly nonlinear features of their inputs, and their expressivity increases exponentially with model depth. We also delineate the space of models for which exponential communication advantages hold by showing that they cannot hold for linear classification. Communication of quantum states that potentially limit the amount of information that can be extracted from them about the data and model parameters may also lead to improved privacy guarantees for distributed computation. Taken as a whole, these findings form a promising foundation for distributed machine learning over quantum networks.


Design from Policies: Conservative Test-Time Adaptation for Offline Policy Optimization Zifeng Zhuang 1,2

Neural Information Processing Systems

Specifically, this non-iterative paradigm allows us to conduct inner-level optimization (value estimation) in training, while performing outer-level optimization (policy extraction) in testing. Naturally, such a paradigm raises three core questions that are not fully answered by prior non-iterative offline RL counterparts like rewardconditioned policy: Q1) What information should we transfer from the inner-level to the outer-level? Q2) What should we pay attention to when exploiting the transferred information for safe/confident outer-level optimization? Q3) What are the benefits of concurrently conducting outer-level optimization during testing? Motivated by model-based optimization (MBO), we propose DROP (Design fROm Policies), which fully answers the above questions. Specifically, in the inner-level, DROP decomposes offline data into multiple subsets and learns an MBO score model (A1). To keep safe exploitation to the score model in the outer-level, we explicitly learn a behavior embedding and introduce a conservative regularization (A2). During testing, we show that DROP permits test-time adaptation, enabling an adaptive inference across states (A3). Empirically, we find that DROP, compared to prior non-iterative offline RL counterparts, gains an average improvement probability of more than 80%, and achieves comparable or better performance compared to prior iterative baselines.


FairJob: A Real-World Dataset for Fairness in Online Systems

Neural Information Processing Systems

We introduce a fairness-aware dataset for job recommendation in advertising, designed to foster research in algorithmic fairness within real-world scenarios. It was collected and prepared to comply with privacy standards and business confidentiality. An additional challenge is the lack of access to protected user attributes such as gender, for which we propose a solution to obtain a proxy estimate. Despite being anonymized and including a proxy for a sensitive attribute, our dataset preserves predictive power and maintains a realistic and challenging benchmark. This dataset addresses a significant gap in the availability of fairnessfocused resources for high-impact domains like advertising - the actual impact being having access or not to precious employment opportunities, where balancing fairness and utility is a common industrial challenge. We also explore various stages in the advertising process where unfairness can occur and introduce a method to compute a fair utility metric for the job recommendations in online systems case from a biased dataset. Experimental evaluations of bias mitigation techniques on the released dataset demonstrate potential improvements in fairness and the associated trade-offs with utility.


A Unifying View of Optimism in Episodic Reinforcement Learning

Neural Information Processing Systems

In this paper we provide a general framework for designing, analyzing and implementing such algorithms in the episodic reinforcement learning problem. This framework is built upon Lagrangian duality, and demonstrates that every model-optimistic algorithm that constructs an optimistic MDP has an equivalent representation as a value-optimistic dynamic programming algorithm. Typically, it was thought that these two classes of algorithms were distinct, with model-optimistic algorithms benefiting from a cleaner probabilistic analysis while value-optimistic algorithms are easier to implement and thus more practical. With the framework developed in this paper, we show that it is possible to get the best of both worlds by providing a class of algorithms which have a computationally efficient dynamic-programming implementation and also a simple probabilistic analysis. Besides being able to capture many existing algorithms in the tabular setting, our framework can also address large-scale problems under realizable function approximation, where it enables a simple model-based analysis of some recently proposed methods.


Data curation via joint example selection further accelerates multimodal learning Olivier J. Hénaff

Neural Information Processing Systems

Data curation is an essential component of large-scale pretraining. In this work, we demonstrate that jointly prioritizing batches of data is more effective for learning than selecting examples independently. Multimodal contrastive objectives expose the dependencies between data and thus naturally yield criteria for measuring the joint learnability of a batch. We derive a simple and tractable algorithm for selecting such batches, which significantly accelerate training beyond individuallyprioritized data points. As performance improves by selecting from large superbatches, we also leverage recent advances in model approximation to reduce the computational overhead of scoring.


Penalty-based Methods for Simple Bilevel Optimization under Hölderian Error Bounds

Neural Information Processing Systems

This paper investigates simple bilevel optimization problems where we minimize an upper-level objective over the optimal solution set of a convex lower-level objective. Existing methods for such problems either only guarantee asymptotic convergence, have slow sublinear rates, or require strong assumptions. To address these challenges, we propose a penalization framework that delineates the relationship between approximate solutions of the original problem and its reformulated counterparts.


LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS

Neural Information Processing Systems

Recent advances in real-time neural rendering using point-based techniques have enabled broader adoption of 3D representations. However, foundational approaches like 3D Gaussian Splatting impose substantial storage overhead, as Structure-from-Motion (SfM) points can grow to millions, often requiring gigabyte-level disk space for a single unbounded scene. This growth presents scalability challenges and hinders splatting efficiency. To address this, we introduce LightGaussian, a method for transforming 3D Gaussians into a more compact format. Inspired by Network Pruning, LightGaussian identifies Gaussians with minimal global significance on scene reconstruction, and applies a pruning and recovery process to reduce redundancy while preserving visual quality. Knowledge distillation and pseudo-view augmentation then transfer spherical harmonic coefficients to a lower degree, yielding compact representations. Gaussian Vector Quantization, based on each Gaussian's global significance, further lowers bitwidth with minimal accuracy loss. LightGaussian achieves an average 15 compression rate while boosting FPS from 144 to 237 within the 3D-GS framework, enabling efficient complex scene representation on the Mip-NeRF 360 and Tank & Temple datasets. The proposed Gaussian pruning approach is also adaptable to other 3D representations (e.g., Scaffold-GS), demonstrating strong generalization capabilities.