large language model
Private Attribute Inference from Images with Vision-Language Models
As large language models (LLMs) become ubiquitous in our daily tasks and digital interactions, associated privacy risks are increasingly in focus. While LLM privacy research has primarily focused on the leakage of model training data, it has recently been shown that LLMs can make accurate privacy-infringing inferences from previously unseen texts. With the rise of vision-language models (VLMs), capable of understanding both images and text, a key question is whether this concern transfers to the previously unexplored domain of benign images posted online. To answer this question, we compile an image dataset with human-annotated labels of the image owner's personal attributes. In order to understand the privacy risks posed by VLMs beyond traditional human attribute recognition, our dataset consists of images where the inferable private attributes do not stem from direct depictions of humans. On this dataset, we evaluate 7 state-of-the-art VLMs, finding that they can infer various personal attributes at up to 77.6% accuracy. Concerningly, we observe that accuracy scales with the general capabilities of the models, implying that future models can be misused as stronger inferential adversaries, establishing an imperative for the development of adequate defenses.
MoVA: Adapting Mixture of Vision Experts to Multimodal Context Bingqi Ma2, Guanglu Song 2
As the key component in multimodal large language models (MLLMs), the ability of the visual encoder greatly affects MLLM's understanding on diverse image content. Although some large-scale pretrained vision encoders such as vision encoders in CLIP and DINOv2 have brought promising performance, we found that there is still no single vision encoder that can dominate various image content understanding, e.g., the CLIP vision encoder leads to outstanding results on general image understanding but poor performance on document or chart content. To alleviate the bias of CLIP vision encoder, we first delve into the inherent behavior of different pre-trained vision encoders and then propose the MoVA, a powerful and novel MLLM, adaptively routing and fusing task-specific vision experts with a coarse-to-fine mechanism. In the coarse-grained stage, we design a contextaware expert routing strategy to dynamically select the most suitable vision experts according to the user instruction, input image, and expertise of vision experts.
Supplementary Information
The claim and evidence conflict pairs can be found at https://huggingface. The scope of our dataset is purely for scientific research. Conflict Verification: Ensuring that the default and conflict evidence are contradictory. The human evaluation results showed a high level of accuracy in our data generation process. We select models with 2B and 7B parameters for our analysis. Models with 7B and 70B parameters are selected for our analysis. To facilitate parallel training, we employ DeepSpeed Zero-Stage 3 [Ren et al., The prompt for generating semantic conflict descriptions is shown in Figure 1. The prompt for generating default evidence is shown in Table 6. The prompt for generating misinformation conflict evidence is shown in Table 7. The prompt for generating temporal conflict evidence is shown in Table 8.
A Benchmark for Evaluating Knowledge Conflicts in Large Language Models
Large language models (LLMs) have achieved impressive advancements across numerous disciplines, yet the critical issue of knowledge conflicts, a major source of hallucinations, has rarely been studied. While a few research explored the conflicts between the inherent knowledge of LLMs and the retrieved contextual knowledge, a comprehensive assessment of knowledge conflict in LLMs is still missing.
Simplified and Generalized Masked Diffusion for Discrete Data
Masked (or absorbing) diffusion is actively explored as an alternative to autoregressive models for generative modeling of discrete data. However, existing work in this area has been hindered by unnecessarily complex model formulations and unclear relationships between different perspectives, leading to suboptimal parameterization, training objectives, and ad hoc adjustments to counteract these issues. In this work, we aim to provide a simple and general framework that unlocks the full potential of masked diffusion models. We show that the continuous-time variational objective of masked diffusion models is a simple weighted integral of cross-entropy losses. Our framework also enables training generalized masked diffusion models with state-dependent masking schedules. When evaluated by perplexity, our models trained on OpenWebText surpass prior diffusion language models at GPT-2 scale and demonstrate superior performance on 4 out of 5 zero-shot language modeling tasks. Furthermore, our models vastly outperform previous discrete diffusion models on pixel-level image modeling, achieving 2.75 (CIFAR-10) and 3.40 (ImageNet 64 64) bits per dimension that are better than autoregressive models of similar sizes.
Graph-based Unsupervised Disentangled Representation Learning via Multimodal Large Language Models Yunnan Wang
Disentangled representation learning (DRL) aims to identify and decompose underlying factors behind observations, thus facilitating data perception and generation. However, current DRL approaches often rely on the unrealistic assumption that semantic factors are statistically independent. In reality, these factors may exhibit correlations, which off-the-shelf solutions have yet to properly address. To tackle this challenge, we introduce a bidirectional weighted graph-based framework, to learn factorized attributes and their interrelations within complex data. Specifically, we propose a ฮฒ-VAE based module to extract factors as the initial nodes of the graph, and leverage the multimodal large language model (MLLM) to discover and rank latent correlations, thereby updating the weighted edges. By integrating these complementary modules, our model successfully achieves fine-grained, practical and unsupervised disentanglement. Experiments demonstrate our method's superior performance in disentanglement and reconstruction. Furthermore, the model inherits enhanced interpretability and generalizability from MLLMs.
HaloScope: Harnessing Unlabeled LLM Generations for Hallucination Detection Yixuan Li
The surge in applications of large language models (LLMs) has prompted concerns about the generation of misleading or fabricated information, known as hallucinations. Therefore, detecting hallucinations has become critical to maintaining trust in LLM-generated content. A primary challenge in learning a truthfulness classifier is the lack of a large amount of labeled truthful and hallucinated data. To address the challenge, we introduce HaloScope, a novel learning framework that leverages the unlabeled LLM generations in the wild for hallucination detection. Such unlabeled data arises freely upon deploying LLMs in the open world, and consists of both truthful and hallucinated information. To harness the unlabeled data, we present an automated membership estimation score for distinguishing between truthful and untruthful generations within unlabeled mixture data, thereby enabling the training of a binary truthfulness classifier on top. Importantly, our framework does not require extra data collection and human annotations, offering strong flexibility and practicality for real-world applications. Extensive experiments show that HaloScope can achieve superior hallucination detection performance, outperforming the competitive rivals by a significant margin.
SA3DIP: Segment Any 3D Instance with Potential 3D Priors Xi Yang
The proliferation of 2D foundation models has sparked research into adapting them for open-world 3D instance segmentation. Recent methods introduce a paradigm that leverages superpoints as geometric primitives and incorporates 2D multi-view masks from Segment Anything model (SAM) as merging guidance, achieving outstanding zero-shot instance segmentation results. However, the limited use of 3D priors restricts the segmentation performance. Previous methods calculate the 3D superpoints solely based on estimated normal from spatial coordinates, resulting in under-segmentation for instances with similar geometry. Besides, the heavy reliance on SAM and hand-crafted algorithms in 2D space suffers from over-segmentation due to SAM's inherent part-level segmentation tendency. To address these issues, we propose SA3DIP, a novel method for Segmenting Any 3D Instances via exploiting potential 3D Priors.
Atlas3D: Physically Constrained Self-Supporting Text-to-3D for Simulation and Fabrication Yunuo Chen
Existing diffusion-based text-to-3D generation methods primarily focus on producing visually realistic shapes and appearances, often neglecting the physical constraints necessary for downstream tasks. Generated models frequently fail to maintain balance when placed in physics-based simulations or 3D-printed. This balance is crucial for satisfying user design intentions in interactive gaming, embodied AI, and robotics, where stable models are needed for reliable interaction. Additionally, stable models ensure that 3D-printed objects, such as figurines for home decoration, can stand on their own without requiring additional support. To fill this gap, we introduce Atlas3D, an automatic and easy-to-implement method that enhances existing Score Distillation Sampling (SDS)-based text-to-3D tools. Atlas3D ensures the generation of self-supporting 3D models that adhere to physical laws of stability under gravity, contact, and friction. Our approach combines a novel differentiable simulation-based loss function with physically inspired regularization, serving as either a refinement or a post-processing module for existing frameworks. We verify Atlas3D's efficacy through extensive generation tasks and validate the resulting 3D models in both simulated and real-world environments.
Discovery of the Hidden World with Large Language Models
Revealing the underlying causal mechanisms in the real world is the key to the development of science. Despite the progress in the past decades, traditional causal discovery approaches (CDs) mainly rely on high-quality measured variables, usually given by human experts, to find causal relations. The lack of well-defined high-level variables in many real-world applications has already been a longstanding roadblock to a broader application of CDs. To this end, this paper presents Causal representatiOn AssistanT (COAT) that introduces large language models (LLMs) to bridge the gap. LLMs are trained on massive observations of the world and have demonstrated great capability in extracting key information from unstructured data. Therefore, it is natural to employ LLMs to assist with proposing useful high-level factors and crafting their measurements.