Goto

Collaborating Authors

 Experimental Study


Frozen-DETR: Enhancing DETR with Image Understanding from Frozen Foundation Models

Neural Information Processing Systems

Recent vision foundation models can extract universal representations and show impressive abilities in various tasks. However, their application on object detection is largely overlooked, especially without fine-tuning them. In this work, we show that frozen foundation models can be a versatile feature enhancer, even though they are not pre-trained for object detection. Specifically, we explore directly transferring the high-level image understanding of foundation models to detectors in the following two ways. First, the class token in foundation models provides an in-depth understanding of the complex scene, which facilitates decoding object queries in the detector's decoder by providing a compact context. Additionally, the patch tokens in foundation models can enrich the features in the detector's encoder by providing semantic details. Utilizing frozen foundation models as plug-and-play modules rather than the commonly used backbone can significantly enhance the detector's performance while preventing the problems caused by the architecture discrepancy between the detector's backbone and the foundation model. With such a novel paradigm, we boost the SOTA query-based detector DINO from 49.0% AP to 51.9% AP (+2.9% AP) and further to 53.8% AP (+4.8% AP) by integrating one or two foundation models respectively, on the COCO validation set after training for 12 epochs with R50 as the detector's backbone.


SILENCE: Lightweight Protection for Privacy in Offloaded Speech Understanding

Neural Information Processing Systems

Speech serves as a ubiquitous input interface for embedded mobile devices. Cloud-based solutions, while offering powerful speech understanding services, raise significant concerns regarding user privacy. To address this, disentanglement-based encoders have been proposed to remove sensitive information from speech signals without compromising the speech understanding functionality. However, these encoders demand high memory usage and computation complexity, making them impractical for resource-constrained wimpy devices. Our solution is based on a key observation that speech understanding hinges on long-term dependency knowledge of the entire utterance, in contrast to privacysensitive elements that are short-term dependent. Exploiting this observation, we propose SILENCE, a lightweight system that selectively obscuring short-term details, without damaging the long-term dependent speech understanding performance. The crucial part of SILENCE is a differential mask generator derived from interpretable learning to automatically configure the masking process. We have implemented SILENCE on the STM32H7 microcontroller and evaluate its efficacy under different attacking scenarios. Our results demonstrate that SILENCE offers speech understanding performance and privacy protection capacity comparable to existing encoders, while achieving up to 53.3 speedup and 134.1 reduction in memory footprint.


On the Computational Landscape of Replicable Learning

Neural Information Processing Systems

We study computational aspects of algorithmic replicability, a notion of stability introduced by Impagliazzo, Lei, Pitassi, and Sorrell [2022]. Motivated by a recent line of work that established strong statistical connections between replicability and other notions of learnability such as online learning, private learning, and SQ learning, we aim to understand better the computational connections between replicability and these learning paradigms. Our first result shows that there is a concept class that is efficiently replicably PAC learnable, but, under standard cryptographic assumptions, no efficient online learner exists for this class. Subsequently, we design an efficient replicable learner for PAC learning parities when the marginal distribution is far from uniform, making progress on a question posed by Impagliazzo et al. [2022]. To obtain this result, we design a replicable lifting framework inspired by Blanc, Lange, Malik, and Tan [2023] that transforms in a black-box manner efficient replicable PAC learners under the uniform marginal distribution over the Boolean hypercube to replicable PAC learners under any marginal distribution, with sample and time complexity that depends on a certain measure of the complexity of the distribution. Finally, we show that any pure DP learner can be transformed to a replicable one in time polynomial in the accuracy, confidence parameters and exponential in the representation dimension of the underlying hypothesis class.


Ask, Attend, Attack: An Effective Decision-Based Black-Box Targeted Attack for Image-to-Text Models, and Min Jiang

Neural Information Processing Systems

While image-to-text models have demonstrated significant advancements in various vision-language tasks, they remain susceptible to adversarial attacks. Existing white-box attacks on image-to-text models require access to the architecture, gradients, and parameters of the target model, resulting in low practicality. Although the recently proposed gray-box attacks have improved practicality, they suffer from semantic loss during the training process, which limits their targeted attack performance. To advance adversarial attacks of image-to-text models, this paper focuses on a challenging scenario: decision-based black-box targeted attacks where the attackers only have access to the final output text and aim to perform targeted attacks. Specifically, we formulate the decision-based black-box targeted attack as a large-scale optimization problem.



Diffusion Models With Learned Adaptive Noise

Neural Information Processing Systems

Diffusion models have gained traction as powerful algorithms for synthesizing highquality images. Central to these algorithms is the diffusion process, a set of equations which maps data to noise in a way that can significantly affect performance. In this paper, we explore whether the diffusion process can be learned from data. Our work is grounded in Bayesian inference and seeks to improve log-likelihood estimation by casting the learned diffusion process as an approximate variational posterior that yields a tighter lower bound (ELBO) on the likelihood.


SCOREQ: Speech Quality Assessment with Contrastive Regression

Neural Information Processing Systems

SCOREQ is a triplet loss function for contrastive regression that addresses the domain generalisation shortcoming exhibited by state of the art no-reference speech quality metrics. In the paper we: (i) illustrate the problem of L2 loss training failing at capturing the continuous nature of the mean opinion score (MOS) labels; (ii) demonstrate the lack of generalisation through a benchmarking evaluation across several speech domains; (iii) outline our approach and explore the impact of the architectural design decisions through incremental evaluation; (iv) evaluate the final model against state of the art models for a wide variety of data and domains. The results show that the lack of generalisation observed in state of the art speech quality metrics is addressed by SCOREQ. We conclude that using a triplet loss function for contrastive regression improves generalisation for speech quality prediction models but also has potential utility across a wide range of applications using regression-based predictive models.


SkipPredict: When to Invest in Predictions for Scheduling

Neural Information Processing Systems

Expanding on recent work on scheduling with predicted job sizes, we consider the effect of the cost of predictions in queueing systems, removing the assumption in prior research that predictions are external to the system's resources and/or cost-free. Additionally, we introduce a novel approach to utilizing predictions, SkipPredict, designed to address their inherent cost. Rather than uniformly applying predictions to all jobs, we propose a tailored approach that categorizes jobs to improve the effectiveness of prediction on performance. To achieve this, we employ one-bit "cheap predictions" to classify jobs as either short or long. SkipPredict prioritizes predicted short jobs over long jobs, and for the long jobs, SkipPredict applies a second round of more detailed "expensive predictions" to approximate Shortest Remaining Processing Time for these jobs.


Multi-Reward Best Policy Identification Filippo Vannella Ericsson AB

Neural Information Processing Systems

Rewards are a critical aspect of formulating Reinforcement Learning (RL) problems; often, one may be interested in testing multiple reward functions, or the problem may naturally involve multiple rewards. In this study, we investigate the Multi-Reward Best Policy Identification (MR-BPI) problem, where the goal is to determine the best policy for all rewards in a given set R with minimal sample complexity and a prescribed confidence level. We derive a fundamental instancespecific lower bound on the sample complexity required by any Probably Correct (PC) algorithm in this setting. This bound guides the design of an optimal exploration policy attaining minimal sample complexity. However, this lower bound involves solving a hard non-convex optimization problem. We address this challenge by devising a convex approximation, enabling the design of sample-efficient algorithms. We propose MR-NaS, a PC algorithm with competitive performance on hard-exploration tabular environments. Extending this approach to Deep RL (DRL), we also introduce DBMR-BPI, an efficient algorithm for model-free exploration in multi-reward settings.


E-Motion: Future Motion Simulation via Event Sequence Diffusion

Neural Information Processing Systems

Forecasting a typical object's future motion is a critical task for interpreting and interacting with dynamic environments in computer vision. Event-based sensors, which could capture changes in the scene with exceptional temporal granularity, may potentially offer a unique opportunity to predict future motion with a level of detail and precision previously unachievable. Inspired by that, we propose to integrate the strong learning capacity of the video diffusion model with the rich motion information of an event camera as a motion simulation framework. Specifically, we initially employ pre-trained stable video diffusion models to adapt the event sequence dataset.