Asia
DropEdge not Foolproof: Effective Augmentation Method for Signed Graph Neural Networks, Lu Li
Signed graphs can model friendly or antagonistic relations where edges are annotated with a positive or negative sign. Signed Graph Neural Networks (SGNNs) have been widely used for signed graph representation learning. While significant progress has been made in SGNNs research, two issues (i.e., graph sparsity and unbalanced triangles) persist in the current SGNN models. We aim to alleviate these issues through data augmentation (DA) techniques which have demonstrated effectiveness in improving the performance of graph neural networks. However, most graph augmentation methods are primarily aimed at graph-level and node-level tasks (e.g., graph classification and node classification) and cannot be directly applied to signed graphs due to the lack of side information (e.g., node features and label information) in available real-world signed graph datasets. Random DropEdge is one of the few DA methods that can be directly used for signed graph data augmentation, but its effectiveness is still unknown.
Normalization Helps Training of Quantized LSTM
Lu Hou, Jinhua Zhu, James Kwok, Fei Gao, Tao Qin, Tie-Yan Liu
The long-short-term memory (LSTM), though powerful, is memory and computation expensive. To alleviate this problem, one approach is to compress its weights by quantization. However, existing quantization methods usually have inferior performance when used on LSTMs. In this paper, we first show theoretically that training a quantized LSTM is difficult because quantization makes the exploding gradient problem more severe, particularly when the LSTM weight matrices are large. We then show that the popularly used weight/layer/batch normalization schemes can help stabilize the gradient magnitude in training quantized LSTMs. Empirical results show that the normalized quantized LSTMs achieve significantly better results than their unnormalized counterparts. Their performance is also comparable with the full-precision LSTM, while being much smaller in size.
Focus On What Matters: Separated Models For Visual-Based RL Generalization
A primary challenge for visual-based Reinforcement Learning (RL) is to generalize effectively across unseen environments. Although previous studies have explored different auxiliary tasks to enhance generalization, few adopt image reconstruction due to concerns about exacerbating overfitting to task-irrelevant features during training. Perceiving the pre-eminence of image reconstruction in representation learning, we propose SMG (Separated Models for Generalization), a novel approach that exploits image reconstruction for generalization. SMG introduces two model branches to extract task-relevant and task-irrelevant representations separately from visual observations via cooperatively reconstruction. Built upon this architecture, we further emphasize the importance of task-relevant features for generalization. Specifically, SMG incorporates two additional consistency losses to guide the agent's focus toward task-relevant areas across different scenarios, thereby achieving free from overfitting. Extensive experiments in DMC demonstrate the SOTA performance of SMG in generalization, particularly excelling in video-background settings. Evaluations on robotic manipulation tasks further confirm the robustness of SMG in real-world applications. Source code is available at https://anonymous.4open.science/r/SMG/.
Multi-relational Poincarรฉ Graph Embeddings Carl Allen 1 Timothy Hospedales
Hyperbolic embeddings have recently gained attention in machine learning due to their ability to represent hierarchical data more accurately and succinctly than their Euclidean analogues. However, multi-relational knowledge graphs often exhibit multiple simultaneous hierarchies, which current hyperbolic models do not capture. To address this, we propose a model that embeds multi-relational graph data in the Poincarรฉ ball model of hyperbolic space. Our Multi-Relational Poincarรฉ model (MuRP) learns relation-specific parameters to transform entity embeddings by Mรถbius matrix-vector multiplication and Mรถbius addition. Experiments on the hierarchical WN18RR knowledge graph show that our Poincarรฉ embeddings outperform their Euclidean counterpart and existing embedding methods on the link prediction task, particularly at lower dimensionality.
Assortment Optimization Under the Mallows model
Antoine Desir, Vineet Goyal, Srikanth Jagabathula, Danny Segev
We consider the assortment optimization problem when customer preferences follow a mixture of Mallows distributions. The assortment optimization problem focuses on determining the revenue/profit maximizing subset of products from a large universe of products; it is an important decision that is commonly faced by retailers in determining what to offer their customers. There are two key challenges: (a) the Mallows distribution lacks a closed-form expression (and requires summing an exponential number of terms) to compute the choice probability and, hence, the expected revenue/profit per customer; and (b) finding the best subset may require an exhaustive search. Our key contributions are an efficiently computable closed-form expression for the choice probability under the Mallows model and a compact mixed integer linear program (MIP) formulation for the assortment problem.
Tracing Hyperparameter Dependencies for Model Parsing via Learnable Graph Pooling Network
Model Parsing defines the task of predicting hyperparameters of the generative model (GM), given a GM-generated image as the input. Since a diverse set of hyperparameters is jointly employed by the generative model, and dependencies often exist among them, it is crucial to learn these hyperparameter dependencies for improving the model parsing performance. To explore such important dependencies, we propose a novel model parsing method called Learnable Graph Pooling Network (LGPN), in which we formulate model parsing as a graph node classification problem, using graph nodes and edges to represent hyperparameters and their dependencies, respectively. Furthermore, LGPN incorporates a learnable pooling-unpooling mechanism tailored to model parsing, which adaptively learns hyperparameter dependencies of GMs used to generate the input image. Also, we introduce a Generation Trace Capturing Network (GTC) that can efficiently identify generation traces of input images, enhancing the understanding of generated images' provenances. Empirically, we achieve state-of-the-art performance in model parsing and its extended applications, showing the superiority of the proposed LGPN. The source code is available at link.
OT4P: Unlocking Effective Orthogonal Group Path for Permutation Relaxation
Optimization over permutations is typically an NP-hard problem that arises extensively in ranking, matching, tracking, etc. Birkhoff polytope-based relaxation methods have made significant advancements, particularly in penalty-free optimization and probabilistic inference. Relaxation onto the orthogonal group offers unique potential advantages such as a lower representation dimension and preservation of inner products; however, equally effective approaches remain unexplored. To bridge the gap, we present a temperature-controlled differentiable transformation that maps unconstrained vector space to the orthogonal group, where the temperature, in the limit, concentrates orthogonal matrices near permutation matrices. This transformation naturally implements a parameterization for the relaxation of permutation matrices, allowing for gradient-based optimization of problems involving permutations. Additionally, by deriving a re-parameterized gradient estimator, this transformation also provides efficient stochastic optimization over the latent permutations. Extensive experiments involving the optimization over permutation matrices validate the effectiveness of the proposed method.
An In-depth Investigation of Sparse Rate Reduction in Transformer-like Models
Deep neural networks have long been criticized for being black-box. To unveil the inner workings of modern neural architectures, a recent work [45] proposed an information-theoretic objective function called Sparse Rate Reduction (SRR) and interpreted its unrolled optimization as a Transformer-like model called Coding Rate Reduction Transformer (CRATE). However, the focus of the study was primarily on the basic implementation, and whether this objective is optimized in practice and its causal relationship to generalization remain elusive. Going beyond this study, we derive different implementations by analyzing layer-wise behaviors of CRATE, both theoretically and empirically. To reveal the predictive power of SRR on generalization, we collect a set of model variants induced by varied implementations and hyperparameters and evaluate SRR as a complexity measure based on its correlation with generalization. Surprisingly, we find out that SRR has a positive correlation coefficient and outperforms other baseline measures, such as path-norm and sharpness-based ones. Furthermore, we show that generalization can be improved using SRR as regularization on benchmark image classification datasets. We hope this paper can shed light on leveraging SRR to design principled models and study their generalization ability.
Meta-Exploiting Frequency Prior for Cross-Domain Few-Shot Learning 2
Meta-learning offers a promising avenue for few-shot learning (FSL), enabling models to glean a generalizable feature embedding through episodic training on synthetic FSL tasks in a source domain. Yet, in practical scenarios where the target task diverges from that in the source domain, meta-learning based method is susceptible to over-fitting. To overcome this, we introduce a novel framework, Meta-Exploiting Frequency Prior for Cross-Domain Few-Shot Learning, which is crafted to comprehensively exploit the cross-domain transferable image prior that each image can be decomposed into complementary low-frequency content details and high-frequency robust structural characteristics. Motivated by this insight, we propose to decompose each query image into its high-frequency and low-frequency components, and parallel incorporate them into the feature embedding network to enhance the final category prediction. More importantly, we introduce a feature reconstruction prior and a prediction consistency prior to separately encourage the consistency of the intermediate feature as well as the final category prediction between the original query image and its decomposed frequency components. This allows for collectively guiding the network's meta-learning process with the aim of learning generalizable image feature embeddings, while not introducing any extra computational cost in the inference phase. Our framework establishes new state-of-the-art results on multiple cross-domain few-shot learning benchmarks.
Uncovering Safety Risks of Large Language Models through Concept Activation Vector
Warning: This paper contains text examples that are offensive or harmful in nature. Despite careful safety alignment, current large language models (LLMs) remain vulnerable to various attacks. To further unveil the safety risks of LLMs, we introduce a Safety Concept Activation Vector (SCAV) framework, which effectively guides the attacks by accurately interpreting LLMs' safety mechanisms. We then develop an SCAV-guided attack method that can generate both attack prompts and embedding-level attacks with automatically selected perturbation hyperparameters. Both automatic and human evaluations demonstrate that our attack method significantly improves the attack success rate and response quality while requiring less training data. Additionally, we find that our generated attack prompts may be transferable to GPT-4, and the embedding-level attacks may also be transferred to other white-box LLMs whose parameters are known. Our experiments further uncover the safety risks present in current LLMs. For example, in our evaluation of seven open-source LLMs, we observe an average attack success rate of 99.14%, based on the classic keyword-matching criterion. Finally, we provide insights into the safety mechanism of LLMs.