Not enough data to create a plot.
Try a different view from the menu above.
SHMT: Self-supervised Hierarchical Makeup Transfer via Latent Diffusion Models Zhaoyang Sun 1,3 Yaxiong Chen 1
This paper studies the challenging task of makeup transfer, which aims to apply diverse makeup styles precisely and naturally to a given facial image. Due to the absence of paired data, current methods typically synthesize sub-optimal pseudo ground truths to guide the model training, resulting in low makeup fidelity. Additionally, different makeup styles generally have varying effects on the person face, but existing methods struggle to deal with this diversity. To address these issues, we propose a novel Self-supervised Hierarchical Makeup Transfer (SHMT) method via latent diffusion models.
Pearls from Pebbles: Improved Confidence Functions for Auto-labeling
Auto-labeling is an important family of techniques that produce labeled training sets with minimum manual annotation. A prominent variant, threshold-based auto-labeling (TBAL), works by finding thresholds on a model's confidence scores above which it can accurately automatically label unlabeled data. However, many models are known to produce overconfident scores, leading to poor TBAL performance. While a natural idea is to apply off-the-shelf calibration methods to alleviate the overconfidence issue, we show that such methods fall short. Rather than experimenting with ad-hoc choices of confidence functions, we propose a framework for studying the optimal TBAL confidence function. We develop a tractable version of the framework to obtain Colander (Confidence functions for Efficient and Reliable Auto-labeling), a new post-hoc method specifically designed to maximize performance in TBAL systems. We perform an extensive empirical evaluation of Colander and compare it against methods designed for calibration. Colander achieves up to 60% improvement on coverage over the baselines while maintaining error level below 5% and using the same amount of labeled data.
How to Boost Any Loss Function
Boosting is a highly successful ML-born optimization setting in which one is required to computationally efficiently learn arbitrarily good models based on the access to a weak learner oracle, providing classifiers performing at least slightly differently from random guessing. A key difference with gradient-based optimization is that boosting's original model does not requires access to first order information about a loss, yet the decades long history of boosting has quickly evolved it into a first order optimization setting - sometimes even wrongfully defining it as such. Owing to recent progress extending gradient-based optimization to use only a loss' zeroth (0
Observational Scaling Laws and the Predictability of Language Model Performance Chris J. Maddison 2,3
Understanding how language model performance varies with scale is critical to benchmark and algorithm development. Scaling laws are one approach to building this understanding, but the requirement of training models across many different scales has limited their use. We propose an alternative, observational approach that bypasses model training and instead builds scaling laws from 100 publically available models. Building a single scaling law from multiple model families is challenging due to large variations in their training compute efficiencies and capabilities. However, we show that these variations are consistent with a simple, generalized scaling law where language model performance is a function of a low-dimensional capability space, and model families only vary in their efficiency in converting training compute to capabilities. Using this approach, we show the surprising predictability of complex scaling phenomena: we show that several emergent phenomena follow a smooth, sigmoidal behavior and are predictable from small models; we show that the agent performance of models such as GPT-4 can be precisely predicted from simpler non-agentic benchmarks; and we show how to predict the impact of post-training interventions like Chain-of-Thought and Self-Consistency as language model capabilities continue to improve.
Stress-Testing Long-Context Language Models with Lifelong ICL and Task Haystack
We introduce Lifelong ICL, a problem setting that challenges long-context language models (LMs) to learn a sequence of language tasks through in-context learning (ICL). We further introduce Task Haystack, an evaluation suite dedicated to assessing and diagnosing how long-context LMs utilizes contexts in Lifelong ICL. When given a task instruction and test inputs, long-context LMs are expected to leverage the relevant demonstrations in the Lifelong ICL prompt, avoid distraction and interference from other tasks, and achieve test accuracies that are not significantly worse than those of the Single-task ICL baseline. Task Haystack draws inspiration from the widely-adopted "needle-in-a-haystack" (NIAH) evaluation, but presents distinct new challenges. It requires models (1) to utilize the contexts at a deeper level, rather than resorting to simple copying and pasting; (2) to navigate through long streams of evolving topics and tasks, proxying the complexities and dynamism of contexts in real-world scenarios. Additionally, Task Haystack inherits the controllability of NIAH, providing model developers with tools and visualizations to identify model vulnerabilities effectively.
Evaluating Large Vision-and-Language Models on Children's Mathematical Olympiads Joanna Matthiesen 2
Recent years have seen a significant progress in the general-purpose problem solving abilities of large vision and language models (LVLMs), such as ChatGPT, Gemini, etc.; some of these breakthroughs even seem to enable AI models to outperform human abilities in varied tasks that demand higher-order cognitive skills. Are the current large AI models indeed capable of generalized problem solving as humans do? A systematic analysis of AI capabilities for joint vision and text reasoning, however, is missing in the current scientific literature. In this paper, we make an effort towards filling this gap, by evaluating state-of-the-art LVLMs on their mathematical and algorithmic reasoning abilities using visuo-linguistic problems from children's Olympiads. Specifically, we consider problems from the Mathematical Kangaroo (MK) Olympiad, which is a popular international competition targeted at children from grades 1-12, that tests children's deeper mathematical abilities using puzzles that are appropriately gauged to their age and skills. Using the puzzles from MK, we created a dataset, dubbed SMART-840, consisting of 840 problems from years 2020-2024. With our dataset, we analyze LVLMs power on mathematical reasoning; their responses on our puzzles offer a direct way to compare against that of children. Our results show that modern LVLMs do demonstrate increasingly powerful reasoning skills in solving problems for higher grades, but lack the foundations to correctly answer problems designed for younger children. Further analysis shows that there is no significant correlation between the reasoning capabilities of AI models and that of young children, and their capabilities appear to be based on a different type of reasoning than the cumulative knowledge that underlies children's mathematics and logic skills.
EEVR: A Dataset of Paired Physiological Signals and Textual Descriptions for Joint Emotion Representation Learning
Figure 2: The figure presents still images extracted from 360 videos used in the experiment to display various environments to the participants. The videos were selected from the publically available 360 VR video dataset (Li et al. (2017).) The EEVR dataset comprises synchronized pairs of physiological signals and textual data. It includes responses to four self-assessment questions regarding perceived arousal, valence, dominance, and discrete emotions ratings collected using PANAS questionnaires (which were further utilized to calculate Positive and Negative Affect Score). The EEVR dataset was collected using Virtual Reality (VR) 360 videos as the elicitation medium. The videos utilized in the dataset were selected based on their arousal and valence ratings to cover all four quadrants of the Russell circumplex emotion model (Russell et al. (1989)), as shown in Figure 2. The remainder of the supplementary materials provide detailed information about the EEVR dataset. Figure 3 provides a datasheet for the EEVR dataset based on Gebru et al. (2018).
EEVR: A Dataset of Paired Physiological Signals and Textual Descriptions for Joint Emotion Representation Learning
EEVR (Emotion Elicitation in Virtual Reality) is a novel dataset specifically designed for language supervision-based pre-training of emotion recognition tasks, such as valence and arousal classification. It features high-quality physiological signals, including electrodermal activity (EDA) and photoplethysmography (PPG), acquired through emotion elicitation via 360-degree virtual reality (VR) videos. Additionally, it includes subject-wise textual descriptions of emotions experienced during each stimulus gathered from qualitative interviews. The dataset consists of recordings from 37 participants and is the first dataset to pair raw text with physiological signals, providing additional contextual information that objective labels cannot offer. To leverage this dataset, we introduced the Contrastive Language Signal Pre-training (CLSP) method, which jointly learns representations using pairs of physiological signals and textual descriptions. Our results show that integrating self-reported textual descriptions with physiological signals significantly improves performance on emotion recognition tasks, such as arousal and valence classification. Moreover, our pre-trained CLSP model demonstrates strong zero-shot transferability to existing datasets, outperforming supervised baseline models, suggesting that the representations learned by our method are more contextualized and generalized. The dataset also includes baseline models for arousal, valence, and emotion classification, as well as code for data cleaning and feature extraction.
Enhancing Multiple Dimensions of Trustworthiness in LLMs via Sparse Activation Control
As the development and application of Large Language Models (LLMs) continue to advance rapidly, enhancing their trustworthiness and aligning them with human preferences has become a critical area of research. Traditional methods rely heavily on extensive data for Reinforcement Learning from Human Feedback (RLHF), but representation engineering offers a new, training-free approach. This technique leverages semantic features to control the representation of LLM's intermediate hidden states, enabling the model to meet specific requirements such as increased honesty or heightened safety awareness. However, a significant challenge arises when attempting to fulfill multiple requirements simultaneously. It proves difficult to encode various semantic contents, like honesty and safety, into a singular semantic feature, restricting its practicality.