Industry
FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low-Rank Adaptations
The rapid development of Large Language Models (LLMs) has been pivotal in advancing AI, with pre-trained LLMs being adaptable to diverse downstream tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning in a privacy-aware manner by utilizing clients' local data through in-situ computation, eliminating the need for data movement. However, fine-tuning LLMs, given their massive scale of parameters, poses challenges for clients with constrained and heterogeneous resources in FL. Previous methods employed low-rank adaptation (LoRA) for efficient federated fine-tuning but utilized traditional FL aggregation strategies on LoRA adapters. These approaches led to mathematically inaccurate aggregation noise, reducing fine-tuning effectiveness and failing to address heterogeneous LoRAs.
281e0b9142763f2b6c944fedb8550ba9-Paper-Datasets_and_Benchmarks_Track.pdf
Driving systems often rely on high-definition (HD) maps for precise environmental information, which is crucial for planning and navigation. While current HD map constructors perform well under ideal conditions, their resilience to real-world challenges, e.g., adverse weather and sensor failures, is not well understood, raising safety concerns. This work introduces MapBench, the first comprehensive benchmark designed to evaluate the robustness of HD map construction methods against various sensor corruptions. Our benchmark encompasses a total of 29 types of corruptions that occur from cameras and LiDAR sensors. Extensive evaluations across 31 HD map constructors reveal significant performance degradation of existing methods under adverse weather conditions and sensor failures, underscoring critical safety concerns. We identify effective strategies for enhancing robustness, including innovative approaches that leverage multi-modal fusion, advanced data augmentation, and architectural techniques. These insights provide a pathway for developing more reliable HD map construction methods, which are essential for the advancement of autonomous driving technology. The benchmark toolkit and affiliated code and model checkpoints have been made publicly accessible.
RCDN: Towards Robust Camera-Insensitivity Collaborative Perception via Dynamic Feature-based 3D Neural Modeling
Collaborative perception is dedicated to tackling the constraints of single-agent perception, such as occlusions, based on the multiple agents' multi-view sensor inputs. However, most existing works assume an ideal condition that all agents' multi-view cameras are continuously available. In reality, cameras may be highly noisy, obscured or even failed during the collaboration. In this work, we introduce a new robust camera-insensitivity problem: how to overcome the issues caused by the failed camera perspectives, while stabilizing high collaborative performance with low calibration cost? To address above problems, we propose RCDN, a Robust Camera-insensitivity collaborative perception with a novel Dynamic feature-based 3D Neural modeling mechanism.
Advancing Fine-Grained Classification by Structure and Subject Preserving Augmentation
Fine-grained visual classification (FGVC) involves classifying closely related sub-classes. This task is difficult due to the subtle differences between classes and the high intra-class variance. Moreover, FGVC datasets are typically small and challenging to gather, thus highlighting a significant need for effective data augmentation. Recent advancements in text-to-image diffusion models offer new possibilities for augmenting classification datasets. While these models have been used to generate training data for classification tasks, their effectiveness in fulldataset training of FGVC models remains under-explored.
Position Coupling: Improving Length Generalization of Arithmetic Transformers Using Task Structure
Even for simple arithmetic tasks like integer addition, it is challenging for Transformers to generalize to longer sequences than those encountered during training. To tackle this problem, we propose position coupling, a simple yet effective method that directly embeds the structure of the tasks into the positional encoding of a (decoder-only) Transformer. Taking a departure from the vanilla absolute position mechanism assigning unique position IDs to each of the tokens, we assign the same position IDs to two or more "relevant" tokens; for integer addition tasks, we regard digits of the same significance as in the same position. On the empirical side, we show that with the proposed position coupling, a small (1-layer) Transformer trained on 1 to 30-digit additions can generalize up to 200-digit additions (6.67 of the trained length). On the theoretical side, we prove that a 1-layer Transformer with coupled positions can solve the addition task involving exponentially many digits, whereas any 1-layer Transformer without positional information cannot entirely solve it. We also demonstrate that position coupling can be applied to other algorithmic tasks such as N 2 multiplication and a two-dimensional task.
Rethinking the Power of Timestamps for Robust Time Series Forecasting: A Global-Local Fusion Perspective Qi Qi1
Time series forecasting has played a pivotal role across various industries, including finance, transportation, energy, healthcare, and climate. Due to the abundant seasonal information they contain, timestamps possess the potential to offer robust global guidance for forecasting techniques. However, existing works primarily focus on local observations, with timestamps being treated merely as an optional supplement that remains underutilized. When data gathered from the real world is polluted, the absence of global information will damage the robust prediction capability of these algorithms. To address these problems, we propose a novel framework named GLAFF. Within this framework, the timestamps are modeled individually to capture the global dependencies. Working as a plugin, GLAFF adaptively adjusts the combined weights for global and local information, enabling seamless collaboration with any time series forecasting backbone. Extensive experiments conducted on nine real-world datasets demonstrate that GLAFF significantly enhances the average performance of widely used mainstream forecasting models by 12.5%, surpassing the previous state-of-the-art method by 5.5%.
Multimodal Task Vectors Enable Many-Shot Multimodal In-Context Learning Brandon Huang 1* Chancharik Mitra 1* Leonid Karlinsky 3
The recent success of interleaved Large Multimodal Models (LMMs) in fewshot learning suggests that in-context learning (ICL) with many examples can be promising for learning new tasks. However, this many-shot multimodal ICL setting has one crucial problem: it is fundamentally limited by the model's context length set at pretraining. The problem is especially prominent in the multimodal domain, which processes both text and images, requiring additional tokens.
Supplementary Material: SeafloorAI: A Large-scale Vision-Language Dataset for Seafloor Geological Survey Kien X. Nguyen 1
A.1 Motivation For what purpose was the dataset created? The dataset was created to further advance machine learning techniques in the field of marine science. Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g., company, institution, organization)? The dataset was created by the Deep-REAL and CSHEL labs at the University of Delaware. The sources of the data are from USGS and NOAA. Who funded the creation of the dataset? The Department of Defense funded the project under the DEPSCoR Award. A.2 Composition What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? An instance is a sonar image (2D grid data), containing different geographic layers, each of which is a channel of the image. How many instances are there in total (of each type, if appropriate)? Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a larger set?
SeafloorAI: A Large-scale Vision-Language Dataset for Seafloor Geological Survey 1 1
A major obstacle to the advancements of machine learning models in marine science, particularly in sonar imagery analysis, is the scarcity of AI-ready datasets. While there have been efforts to make AI-ready sonar image dataset publicly available, they suffer from limitations in terms of environment setting and scale. To bridge this gap, we introduce SeafloorAI, the first extensive AI-ready datasets for seafloor mapping across 5 geological layers that is curated in collaboration with marine scientists. We further extend the dataset to SeafloorGenAI by incorporating the language component in order to facilitate the development of both visionand language-capable machine learning models for sonar imagery. The dataset consists of 62 geo-distributed data surveys spanning 17,300 square kilometers, with 696K sonar images, 827K annotated segmentation masks, 696K detailed language descriptions and approximately 7M question-answer pairs. By making our data processing source code publicly available, we aim to engage the marine science community to enrich the data pool and inspire the machine learning community to develop more robust models. This collaborative approach will enhance the capabilities and applications of our datasets within both fields.