Curriculum
DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving
Solving mathematical problems requires advanced reasoning abilities and presents notable challenges for large language models. Previous works usually synthesize data from proprietary models to augment existing datasets, followed by instruction tuning to achieve top-tier results. However, our analysis of these datasets reveals severe biases towards easy queries, with frequent failures to generate any correct response for the most challenging queries. Hypothesizing that difficult queries are crucial to learning complex reasoning, we propose Difficulty-Aware Rejection Tuning (DART), a method that allocates difficult queries more trials during the synthesis phase, enabling more extensive training on difficult samples. Utilizing DART, we have created new datasets for mathematical problem-solving that focus more on difficult queries and are substantially smaller than previous ones. Remarkably, our synthesis process solely relies on a 7B-sized open-weight model, without reliance on the commonly used proprietary GPT-4. We fine-tune various base models on our datasets ranging from 7B to 70B in size, resulting in a series of strong models called DART-Math. In comprehensive in-domain and out-of-domain evaluation on 6 mathematical benchmarks, DART-Math outperforms vanilla rejection tuning significantly, being superior or comparable to previous arts, despite using much smaller datasets and no proprietary models.
BERTs are Generative In-Context Learners
While in-context learning is commonly associated with causal language models, such as GPT, we demonstrate that this capability also'emerges' in masked language models. Through an embarrassingly simple inference technique, we enable an existing masked model, DeBERTa, to perform generative tasks without additional training or architectural changes. Our evaluation reveals that the masked and causal language models behave very differently, as they clearly outperform each other on different categories of tasks. These complementary strengths suggest that the field's focus on causal models for in-context learning may be limiting - both architectures can develop these capabilities, but with distinct advantages; pointing toward promising hybrid approaches that combine the strengths of both objectives.
Decompose, Analyze and Rethink: Solving Intricate Problems with Human-like Reasoning Cycle
In this paper, we introduce DeAR (Decompose-Analyze-Rethink), a framework that iteratively builds a reasoning tree to tackle intricate problems within a single large language model (LLM). Unlike approaches that extend or search for rationales, DeAR is featured by 1) adopting a tree-based question decomposition manner to plan the organization of rationales, which mimics the logical planning inherent in human cognition; 2) globally updating the rationales at each reasoning step through natural language feedback. Specifically, the Decompose stage decomposes the question into simpler sub-questions, storing them as new nodes; the Analyze stage generates and self-checks rationales for sub-questions at each node level; and the Rethink stage updates parent-node rationales based on feedback from their child nodes. By generating and updating the reasoning process from a more global perspective, DeAR constructs more adaptive and accurate logical structures for complex problems, facilitating timely error correction compared to rationale-extension and search-based approaches such as Tree-of-Thoughts (ToT) and Graph-of-Thoughts (GoT). We conduct extensive experiments on three reasoning benchmarks, including ScienceQA, StrategyQA, and GSM8K, which cover a variety of reasoning tasks, demonstrating that our approach significantly reduces logical errors and enhances performance across various LLMs. Furthermore, we validate that DeAR is an efficient method that achieves a superior trade-off between accuracy and reasoning time compared to ToT and GoT.
Counterfactual Fairness
Matt J. Kusner, Joshua Loftus, Chris Russell, Ricardo Silva
Machine learning can impact people with legal or ethical consequences when it is used to automate decisions in areas such as insurance, lending, hiring, and predictive policing. In many of these scenarios, previous decisions have been made that are unfairly biased against certain subpopulations, for example those of a particular race, gender, or sexual orientation. Since this past data may be biased, machine learning predictors must account for this to avoid perpetuating or creating discriminatory practices. In this paper, we develop a framework for modeling fairness using tools from causal inference. Our definition of counterfactual fairness captures the intuition that a decision is fair towards an individual if it the same in (a) the actual world and (b) a counterfactual world where the individual belonged to a different demographic group. We demonstrate our framework on a real-world problem of fair prediction of success in law school.
This AI-powered language-learning tool teaches you 11 languages
TL;DR: Mosalingua uses AI to help you learn a new language, and it's only 98 for life. Being able to speak a second language is super useful. The problem is that learning to speak another language is pretty tough, especially if you're balancing work, school, and so many other responsibilities. If you want an easier way to learn a second, third, or even fourth language, check out Mosalingua. Their self-paced lessons give you the chance to learn up to 11 languages in a way that works for you, and it's only 97.99 for a lifetime subscription (reg.
DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving
Solving mathematical problems requires advanced reasoning abilities and presents notable challenges for large language models. Previous works usually synthesize data from proprietary models to augment existing datasets, followed by instruction tuning to achieve top-tier results. However, our analysis of these datasets reveals severe biases towards easy queries, with frequent failures to generate any correct response for the most challenging queries. Hypothesizing that difficult queries are crucial to learning complex reasoning, we propose Difficulty-Aware Rejection Tuning (DART), a method that allocates difficult queries more trials during the synthesis phase, enabling more extensive training on difficult samples. Utilizing DART, we have created new datasets for mathematical problem-solving that focus more on difficult queries and are substantially smaller than previous ones. Remarkably, our synthesis process solely relies on a 7B-sized open-weight model, without reliance on the commonly used proprietary GPT-4. We fine-tune various base models on our datasets ranging from 7B to 70B in size, resulting in a series of strong models called DART-Math. In comprehensive in-domain and out-of-domain evaluation on 6 mathematical benchmarks, DART-Math outperforms vanilla rejection tuning significantly, being superior or comparable to previous arts, despite using much smaller datasets and no proprietary models.
Auslan-Daily: Australian Sign Language Translation for Daily Communication and News
Sign language translation (SLT) aims to convert a continuous sign language video clip into a spoken language. Considering different geographic regions generally have their own native sign languages, it is valuable to establish corresponding SLT datasets to support related communication and research. Auslan, as a sign language specific to Australia, still lacks a dedicated large-scale dataset for SLT. To fill this gap, we curate an Australian Sign Language translation dataset, dubbed Auslan-Daily, which is collected from the Auslan educational TV series and Auslan TV programs. The former involves daily communications among multiple signers in the wild, while the latter comprises sign language videos for up-to-date news, weather forecasts, and documentaries. In particular, Auslan-Daily has two main features: (1) the topics are diverse and signed by multiple signers, and (2) the scenes in our dataset are more complex, e.g., captured in various environments, gesture interference during multi-signers' interactions and various camera positions. With a collection of more than 45 hours of high-quality Auslan video materials, we invite Auslan experts to align different fine-grained visual and language pairs, including video fingerspelling, video gloss, and video sentence. As a result, Auslan-Daily contains multi-grained annotations that can be utilized to accomplish various fundamental sign language tasks, such as signer detection, sign spotting, fingerspelling detection, isolated sign language recognition, sign language translation and alignment.