Middle East
MambaTalk: Efficient Holistic Gesture Synthesis with Selective State Space Models
Gesture synthesis is a vital realm of human-computer interaction, with wide-ranging applications across various fields like film, robotics, and virtual reality. Recent advancements have utilized the diffusion model to improve gesture synthesis. However, the high computational complexity of these techniques limits the application in reality. In this study, we explore the potential of state space models (SSMs). Direct application of SSMs in gesture synthesis encounters difficulties, which stem primarily from the diverse movement dynamics of various body parts. The generated gestures may also exhibit unnatural jittering issues. To address these, we implement a two-stage modeling strategy with discrete motion priors to enhance the quality of gestures. Built upon the selective scan mechanism, we introduce MambaTalk, which integrates hybrid fusion modules, local and global scans to refine latent space representations. Subjective and objective experiments demonstrate that our method surpasses the performance of state-of-the-art models.
Fixed Confidence Best Arm Identification in the Bayesian Setting
We consider the fixed-confidence best arm identification (FC-BAI) problem in the Bayesian setting. This problem aims to find the arm of the largest mean with a fixed confidence level when the bandit model has been sampled from the known prior. Most studies on the FC-BAI problem have been conducted in the frequentist setting, where the bandit model is predetermined before the game starts. We show that the traditional FC-BAI algorithms studied in the frequentist setting, such as trackand-stop and top-two algorithms, result in arbitrarily suboptimal performances in the Bayesian setting. We also obtain a lower bound of the expected number of samples in the Bayesian setting and introduce a variant of successive elimination that has a matching performance with the lower bound up to a logarithmic factor. Simulations verify the theoretical results.
CLIPAway: Harmonizing Focused Embeddings for Removing Objects via Diffusion Models
Advanced image editing techniques, particularly inpainting, are essential for seamlessly removing unwanted elements while preserving visual integrity. Traditional GAN-based methods have achieved notable success, but recent advancements in diffusion models have produced superior results due to their training on large-scale datasets, enabling the generation of remarkably realistic inpainted images. Despite their strengths, diffusion models often struggle with object removal tasks without explicit guidance, leading to unintended hallucinations of the removed object. To address this issue, we introduce CLIPAway, a novel approach leveraging CLIP embeddings to focus on background regions while excluding foreground elements. CLIPAway enhances inpainting accuracy and quality by identifying embeddings that prioritize the background, thus achieving seamless object removal. Unlike other methods that rely on specialized training datasets or costly manual annotations, CLIPAway provides a flexible, plug-and-play solution compatible with various diffusion-based inpainting techniques.
Locating What You Need: Towards Adapting Diffusion Models to OOD Concepts In-the-Wild
The recent large-scale text-to-image generative models have attained unprecedented performance, while people established adaptor modules like LoRA and DreamBooth to extend this performance to even more unseen concept tokens. However, we empirically find that this workflow often fails to accurately depict the out-of-distribution concepts. This failure is highly related to the low quality of training data. To resolve this, we present a framework called Controllable Adaptor Towards Out-of-Distribution Concepts (CATOD). Our framework follows the active learning paradigm which includes high-quality data accumulation and adaptor training, enabling a finer-grained enhancement of generative results. The aesthetics score and concept-matching score are two major factors that impact the quality of synthetic results. One key component of CATOD is the weighted scoring system that automatically balances between these two scores and we also offer comprehensive theoretical analysis for this point. Then, it determines how to select data and schedule the adaptor training based on this scoring system. The extensive results show that CATOD significantly outperforms the prior approaches with an 11.10 boost on the CLIP score and a 33.08% decrease on the CMMD metric.
GlotCC: An Open Broad-Coverage CommonCrawl Corpus and Pipeline for Minority Languages Franรงois Yvon
The need for large text corpora has increased with the advent of pretrained language models and, in particular, the discovery of scaling laws for these models. Most available corpora have sufficient data only for languages with large dominant communities. However, there is no corpus available that (i) covers a wide range of minority languages; (ii) is generated by an open-source reproducible pipeline; and (iii) is rigorously cleaned from noise, making it trustworthy to use. We present GlotCC, a clean, document-level, 2TB general domain corpus derived from CommonCrawl, covering more than 1000 languages. We make GlotCC and the system used to generate it-- including the pipeline, language identification model, and filters--available to the research community.
Can Large Language Model Agents Simulate Human Trust Behavior?
Large Language Model (LLM) agents have been increasingly adopted as simulation tools to model humans in social science and role-playing applications. However, one fundamental question remains: can LLM agents really simulate human behavior? In this paper, we focus on one critical and elemental behavior in human interactions, trust, and investigate whether LLM agents can simulate human trust behavior. We first find that LLM agents generally exhibit trust behavior, referred to as agent trust, under the framework of Trust Games, which are widely recognized in behavioral economics. Then, we discover that GPT-4 agents manifest high behavioral alignment with humans in terms of trust behavior, indicating the feasibility of simulating human trust behavior with LLM agents. In addition, we probe the biases of agent trust and differences in agent trust towards other LLM agents and humans. We also explore the intrinsic properties of agent trust under conditions including external manipulations and advanced reasoning strategies. Our study provides new insights into the behaviors of LLM agents and the fundamental analogy between LLMs and humans beyond value alignment. We further illustrate broader implications of our discoveries for applications where trust is paramount.
MTGS: A Novel Framework for Multi-Person Temporal Gaze Following and Social Gaze Prediction
Gaze following and social gaze prediction are fundamental tasks providing insights into human communication behaviors, intent, and social interactions. Most previous approaches addressed these tasks separately, either by designing highly specialized social gaze models that do not generalize to other social gaze tasks or by considering social gaze inference as an ad-hoc post-processing of the gaze following task. Furthermore, the vast majority of gaze following approaches have proposed models that can handle only one person at a time and are static, therefore failing to take advantage of social interactions and temporal dynamics. In this paper, we address these limitations and introduce a novel framework to jointly predict the gaze target and social gaze label for all people in the scene. It comprises (i) a temporal, transformer-based architecture that, in addition to frame tokens, handles personspecific tokens capturing the gaze information related to each individual; (ii) a new dataset, VSGaze, built from multiple gaze following and social gaze datasets by extending and validating head detections and tracks, and unifying annotation types. We demonstrate that our model can address and benefit from training on all tasks jointly, achieving state-of-the-art results for multi-person gaze following and social gaze prediction. Our annotations and code will be made publicly available.
ReLIZO: Sample Reusable Linear Interpolation-based Zeroth-order Optimization Xiaoxing Wang
Gradient estimation is critical in zeroth-order optimization methods, which aims to obtain the descent direction by sampling update directions and querying function evaluations. Extensive research has been conducted including smoothing and linear interpolation. The former methods smooth the objective function, causing a biased gradient estimation, while the latter often enjoys more accurate estimates, at the cost of large amounts of samples and queries at each iteration to update variables. This paper resorts to the linear interpolation strategy and proposes to reduce the complexity of gradient estimation by reusing queries in the prior iterations while maintaining the sample size unchanged. Specifically, we model the gradient estimation as a quadratically constrained linear program problem and manage to derive the analytical solution. It innovatively decouples the required sample size from the variable dimension without extra conditions required, making it able to leverage the queries in the prior iterations. Moreover, part of the intermediate variables that contribute to the gradient estimation can be directly indexed, significantly reducing the computation complexity.
Directional Smoothness and Gradient Methods: Convergence and Adaptivity
We develop new sub-optimality bounds for gradient descent (GD) that depend on the conditioning of the objective along the path of optimization rather than on global, worst-case constants. Key to our proofs is directional smoothness, a measure of gradient variation that we use to develop upper-bounds on the objective. Minimizing these upper-bounds requires solving implicit equations to obtain a sequence of strongly adapted step-sizes; we show that these equations are straightforward to solve for convex quadratics and lead to new guarantees for two classical step-sizes. For general functions, we prove that the Polyak step-size and normalized GD obtain fast, path-dependent rates despite using no knowledge of the directional smoothness. Experiments on logistic regression show our convergence guarantees are tighter than the classical theory based on L-smoothness.