Neural Information Processing Systems
Learning a Color Algorithm from Examples
Poggio, Tomaso A., Hurlbert, Anya C.
The operator also produces simultaneous brightness contrast, as expected from the shape and sign of its surround. The output reflectance it computes for a patch of fixed input reflectance decreases linearly with increasing average irradiance of the input test vector in which the patch appears. Similarly, to us, a dark patch appears darker when against a light background than against a dark one.
A Trellis-Structured Neural Network
Petsche, Thomas, Dickinson, Bradley W.
We have presented a locally interconnected network which minimizes a function that is analogous to the log likelihood function near the global minimum. The results of simulations demonstrate that the network can successfully decode input sequences containing no noise at least as well as the globally connected Hopfield-Tank [6] decomposition network. Simulations also strongly support the conjecture that in the noiseless case, the network can be guaranteed to converge to the global minimum. In addition, for low error rates, the network can also decode noisy received sequences. We have been able to apply the Cohen-Grossberg proof of the stability of "oncenter off-surround" networks to show that each stage will maximize the desired local "likelihood" for noisy received sequences. We have also shown that, in the large gain limit, the network as a whole is stable and that the equilibrium points correspond to the MLSE decoder output. Simulations have verified this proof of stability even for relatively small gains. Unfortunately, a proof of strict Lyapunov stability is very difficult, and may not be possible, because of the cooperative connections in the network. This network demonstrates that it is possible to perform interesting functions even if only localized connections are allowed, although there may be some loss of performance.
Phasor Neural Networks
ABSTRACT A novel network type is introduced which uses unit-length 2-vectors for local variables. As an example of its applications, associative memory nets are defined and their performance analyzed. Real systems corresponding to such'phasor' models can be e.g. INTRODUCTION Most neural network models use either binary local variables or scalars combined with sigmoidal nonlinearities. Rather awkward coding schemes have to be invoked if one wants to maintain linear relations between the local signals being processed in e.g.
Speech Recognition Experiments with Perceptrons
ABSTRACT Artificial neural networks (ANNs) are capable of accurate recognition of simple speech vocabularies such as isolated digits [1]. This paper looks at two more difficult vocabularies, the alphabetic E-set and a set of polysyllabic words. The E-set is difficult because it contains weak discriminants and polysyllables are difficult because of timing variation. Polysyllabic word recognition is aided by a time pre-alignment technique based on dynamic programming and E-set recognition is improved by focusing attention. Recognition accuracies are better than 98% for both vocabularies when implemented with a single layer perceptron.
How Neural Nets Work
Lapedes, Alan S., Farber, Robert M.
How Neural Nets Work Alan Lapedes Robert Farber Theoretical Division Los Alamos National Laboratory Los Alamos, NM 87545 Abstract: There is presently great interest in the abilities of neural networks to mimic "qualitative reasoning" by manipulating neural incodings of symbols. Less work has been performed on using neural networks to process floating point numbers and it is sometimes stated that neural networks are somehow inherently inaccurate and therefore best suited for "fuzzy" qualitative reasoning. Nevertheless, the potential speed of massively parallel operations make neural net "number crunching" an interesting topic to explore. In this paper we discuss some of our work in which we demonstrate that for certain applications neural networks can achieve significantly higher numerical accuracy than more conventional techniques. In particular, prediction of future values of a chaotic time series can be performed with exceptionally high accuracy. We analyze how a neural net is able to do this, and in the process show that a large class of functions from Rn. Rffl may be accurately approximated by a backpropagation neural net with just two "hidden" layers. The network uses this functional approximation to perform either interpolation (signal processing applications) or extrapolation (symbol processing applicationsJ.
Invariant Object Recognition Using a Distributed Associative Memory
Wechsler, Harry, Zimmerman, George Lee
This paper describes an approach to 2-dimensional object recognition. Complex-log conformal mapping is combined with a distributed associative memory to create a system which recognizes objects regardless of changes in rotation or scale. Recalled information from the memorized database is used to classify an object, reconstruct the memorized version of the object, and estimate the magnitude of changes in scale or rotation. The system response is resistant to moderate amounts of noise and occlusion. Several experiments, using real, gray scale images, are presented to show the feasibility of our approach. Introduction The challenge of the visual recognition problem stems from the fact that the projection of an object onto an image can be confounded by several dimensions of variability such as uncertain perspective, changing orientation and scale, sensor noise, occlusion, and nonuniform illumination.